Hypergraphic Polytopes: Combinatorial Properties and Antipode
Séminaire lotharingien de combinatoire, 80B (2018)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
Given a hypergraph G, its hypergraphic polytope PG is the Minkowski sum of simplices corresponding to each hyperedge of G. Using a notion of orientation on G, we prove that the faces of PG are in bijective correspondence with acyclic orientations of G. This allows us to give a geometric understanding of the antipode in a cocommutative Hopf algebra of hypergraphs. We also give a characterization of when a hypergraphic polytope is a simple polytope. The correspondence between faces and acyclic orientations is used to prove some combinatorial properties of nestohedra and generalized Pitman-Stanley polytopes.
@article{SLC_2018_80B_a69,
author = {Carolina Benedetti and Nantel Bergeron, and John Machacek},
title = {Hypergraphic {Polytopes:} {Combinatorial} {Properties} and {Antipode}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {80B},
year = {2018},
url = {http://geodesic.mathdoc.fr/item/SLC_2018_80B_a69/}
}
Carolina Benedetti; Nantel Bergeron,; John Machacek. Hypergraphic Polytopes: Combinatorial Properties and Antipode. Séminaire lotharingien de combinatoire, 80B (2018). http://geodesic.mathdoc.fr/item/SLC_2018_80B_a69/