Plabic Graphs and Zonotopal Tilings
Séminaire lotharingien de combinatoire, 80B (2018)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
We introduce the notion of chord separation of two sets which generalizes Leclerc and Zelevinsky's weak separation. We show that every maximal by inclusion collection of pairwise chord separated sets is also maximal by size. Moreover, we prove that such collections are in bijection with fine zonotopal tilings of the three-dimensional cyclic zonotope. As a result, we get that Postnikov's reduced plabic graphs are precisely the objects dual to horizontal sections of zonotopal tilings of the three-dimensional cyclic zonotope, and Postnikov's moves on plabic graphs correspond to flips of these zonotopal tilings.
@article{SLC_2018_80B_a67,
author = {Pavel Galashin},
title = {Plabic {Graphs} and {Zonotopal} {Tilings}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {80B},
year = {2018},
url = {http://geodesic.mathdoc.fr/item/SLC_2018_80B_a67/}
}
Pavel Galashin. Plabic Graphs and Zonotopal Tilings. Séminaire lotharingien de combinatoire, 80B (2018). http://geodesic.mathdoc.fr/item/SLC_2018_80B_a67/