Topology of Posets with Special Partial Matchings
Séminaire lotharingien de combinatoire, 80B (2018)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
Special partial matchings (SPMs) are a generalisation of Brenti's special matchings. Let a \emph{pircon} be a poset in which every non-trivial principal order ideal is finite and admits an SPM. Thus pircons generalise Marietti's zircons. We prove that every open interval in a pircon is a PL ball or a PL sphere. It is then demonstrated that Bruhat orders on certain twisted identities and quasiparabolic W-sets constitute pircons. Together, these results extend a result of Can, Cherniavsky, and Twelbeck, prove a conjecture of Hultman, and confirm a claim of Rains and Vazirani.
@article{SLC_2018_80B_a63,
author = {Nancy Abdallah and Mikael Hansson, and Axel Hultman},
title = {Topology of {Posets} with {Special} {Partial} {Matchings}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {80B},
year = {2018},
url = {http://geodesic.mathdoc.fr/item/SLC_2018_80B_a63/}
}
Nancy Abdallah; Mikael Hansson,; Axel Hultman. Topology of Posets with Special Partial Matchings. Séminaire lotharingien de combinatoire, 80B (2018). http://geodesic.mathdoc.fr/item/SLC_2018_80B_a63/