Topology of Posets with Special Partial Matchings
Séminaire lotharingien de combinatoire, 80B (2018) Cet article a éte moissonné depuis la source Séminaire Lotharingien de Combinatoire website

Voir la notice de l'acte

Special partial matchings (SPMs) are a generalisation of Brenti's special matchings. Let a \emph{pircon} be a poset in which every non-trivial principal order ideal is finite and admits an SPM. Thus pircons generalise Marietti's zircons. We prove that every open interval in a pircon is a PL ball or a PL sphere. It is then demonstrated that Bruhat orders on certain twisted identities and quasiparabolic W-sets constitute pircons. Together, these results extend a result of Can, Cherniavsky, and Twelbeck, prove a conjecture of Hultman, and confirm a claim of Rains and Vazirani.

@article{SLC_2018_80B_a63,
     author = {Nancy Abdallah and Mikael Hansson, and Axel Hultman},
     title = {Topology of {Posets} with {Special} {Partial} {Matchings}},
     journal = {S\'eminaire lotharingien de combinatoire},
     year = {2018},
     volume = {80B},
     url = {http://geodesic.mathdoc.fr/item/SLC_2018_80B_a63/}
}
TY  - JOUR
AU  - Nancy Abdallah
AU  - Mikael Hansson,
AU  - Axel Hultman
TI  - Topology of Posets with Special Partial Matchings
JO  - Séminaire lotharingien de combinatoire
PY  - 2018
VL  - 80B
UR  - http://geodesic.mathdoc.fr/item/SLC_2018_80B_a63/
ID  - SLC_2018_80B_a63
ER  - 
%0 Journal Article
%A Nancy Abdallah
%A Mikael Hansson,
%A Axel Hultman
%T Topology of Posets with Special Partial Matchings
%J Séminaire lotharingien de combinatoire
%D 2018
%V 80B
%U http://geodesic.mathdoc.fr/item/SLC_2018_80B_a63/
%F SLC_2018_80B_a63
Nancy Abdallah; Mikael Hansson,; Axel Hultman. Topology of Posets with Special Partial Matchings. Séminaire lotharingien de combinatoire, 80B (2018). http://geodesic.mathdoc.fr/item/SLC_2018_80B_a63/