Topology of Posets with Special Partial Matchings
Séminaire lotharingien de combinatoire, 80B (2018)
Cet article a éte moissonné depuis la source Séminaire Lotharingien de Combinatoire website
Special partial matchings (SPMs) are a generalisation of Brenti's special matchings. Let a \emph{pircon} be a poset in which every non-trivial principal order ideal is finite and admits an SPM. Thus pircons generalise Marietti's zircons. We prove that every open interval in a pircon is a PL ball or a PL sphere. It is then demonstrated that Bruhat orders on certain twisted identities and quasiparabolic W-sets constitute pircons. Together, these results extend a result of Can, Cherniavsky, and Twelbeck, prove a conjecture of Hultman, and confirm a claim of Rains and Vazirani.
@article{SLC_2018_80B_a63,
author = {Nancy Abdallah and Mikael Hansson, and Axel Hultman},
title = {Topology of {Posets} with {Special} {Partial} {Matchings}},
journal = {S\'eminaire lotharingien de combinatoire},
year = {2018},
volume = {80B},
url = {http://geodesic.mathdoc.fr/item/SLC_2018_80B_a63/}
}
Nancy Abdallah; Mikael Hansson,; Axel Hultman. Topology of Posets with Special Partial Matchings. Séminaire lotharingien de combinatoire, 80B (2018). http://geodesic.mathdoc.fr/item/SLC_2018_80B_a63/