On cyclic Descents for Tableaux
Séminaire lotharingien de combinatoire, 80B (2018)
Cet article a éte moissonné depuis la source Séminaire Lotharingien de Combinatoire website
The notion of descent set, for permutations as well as for standard Young tableaux (SYT), is classical. Cellini introduced a natural notion of cyclic descent set for permutations, and Rhoades introduced such a notion for SYT - but only for rectangular shapes. In this work we define cyclic extensions of descent sets in a general context, and prove existence and essential uniqueness for SYT of almost all shapes. The proof applies nonnegativity properties of Postnikov's toric Schur polynomials, providing a new interpretation of certain Gromov-Witten invariants.
@article{SLC_2018_80B_a59,
author = {Ron M. Adin and Victor Reiner, and Yuval Roichman},
title = {On cyclic {Descents} for {Tableaux}},
journal = {S\'eminaire lotharingien de combinatoire},
year = {2018},
volume = {80B},
url = {http://geodesic.mathdoc.fr/item/SLC_2018_80B_a59/}
}
Ron M. Adin; Victor Reiner,; Yuval Roichman. On cyclic Descents for Tableaux. Séminaire lotharingien de combinatoire, 80B (2018). http://geodesic.mathdoc.fr/item/SLC_2018_80B_a59/