Eulerian Polynomials on Segmented Permutations
Séminaire lotharingien de combinatoire, 80B (2018)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

We define a generalization of the Eulerian polynomials and the Eulerian numbers by considering a descent statistic on segmented permutations coming from the study of 2-species exclusion processes and a change of basis in a Hopf algebra. We give some properties satisfied by these generalized Eulerian numbers. We also define a q-analog of these Eulerian polynomials which gives back usual Eulerian polynomials and ordered Bell polynomials for specific values of its variables. We also define a noncommutative analog living in the algebra of segmented compositions. It gives us an explicit generating function and some identities satisfied by the generalized Eulerian polynomials such as a Worpitzky-type relation.

@article{SLC_2018_80B_a56,
     author = {Arthur Nunge},
     title = {Eulerian {Polynomials} on {Segmented} {Permutations}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {80B},
     year = {2018},
     url = {http://geodesic.mathdoc.fr/item/SLC_2018_80B_a56/}
}
TY  - JOUR
AU  - Arthur Nunge
TI  - Eulerian Polynomials on Segmented Permutations
JO  - Séminaire lotharingien de combinatoire
PY  - 2018
VL  - 80B
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_2018_80B_a56/
ID  - SLC_2018_80B_a56
ER  - 
%0 Journal Article
%A Arthur Nunge
%T Eulerian Polynomials on Segmented Permutations
%J Séminaire lotharingien de combinatoire
%D 2018
%V 80B
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_2018_80B_a56/
%F SLC_2018_80B_a56
Arthur Nunge. Eulerian Polynomials on Segmented Permutations. Séminaire lotharingien de combinatoire, 80B (2018). http://geodesic.mathdoc.fr/item/SLC_2018_80B_a56/