Eulerian Polynomials on Segmented Permutations
Séminaire lotharingien de combinatoire, 80B (2018)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
We define a generalization of the Eulerian polynomials and the Eulerian numbers by considering a descent statistic on segmented permutations coming from the study of 2-species exclusion processes and a change of basis in a Hopf algebra. We give some properties satisfied by these generalized Eulerian numbers. We also define a q-analog of these Eulerian polynomials which gives back usual Eulerian polynomials and ordered Bell polynomials for specific values of its variables. We also define a noncommutative analog living in the algebra of segmented compositions. It gives us an explicit generating function and some identities satisfied by the generalized Eulerian polynomials such as a Worpitzky-type relation.
@article{SLC_2018_80B_a56,
author = {Arthur Nunge},
title = {Eulerian {Polynomials} on {Segmented} {Permutations}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {80B},
year = {2018},
url = {http://geodesic.mathdoc.fr/item/SLC_2018_80B_a56/}
}
Arthur Nunge. Eulerian Polynomials on Segmented Permutations. Séminaire lotharingien de combinatoire, 80B (2018). http://geodesic.mathdoc.fr/item/SLC_2018_80B_a56/