Combinatorics of X-variables in Finite Type Cluster Algebras
Séminaire lotharingien de combinatoire, 80B (2018)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
We compute the number of X-variables (also called coefficients) of a cluster algebra of finite type when the underlying semifield is the universal semifield. For non-exceptional types, these numbers arise from a bijection between coefficients and quadrilaterals (with a choice of diagonal) appearing in triangulations of certain marked surfaces. We conjecture that similar results hold for cluster algebras from arbitrary marked surfaces, and obtain corollaries regarding the structure of finite type cluster algebras of geometric type.
@article{SLC_2018_80B_a54,
author = {Melissa Sherman-Bennett},
title = {Combinatorics of {X-variables} in {Finite} {Type} {Cluster} {Algebras}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {80B},
year = {2018},
url = {http://geodesic.mathdoc.fr/item/SLC_2018_80B_a54/}
}
Melissa Sherman-Bennett. Combinatorics of X-variables in Finite Type Cluster Algebras. Séminaire lotharingien de combinatoire, 80B (2018). http://geodesic.mathdoc.fr/item/SLC_2018_80B_a54/