Computing Reflection Length in an Affine Coxeter Group
Séminaire lotharingien de combinatoire, 80B (2018)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
In any Coxeter group, the conjugates of elements in its Coxeter generating set are called reflections and the reflection length of an element is its length with respect to this expanded generating set. In this article we give a simple formula that computes the reflection length of any element in any affine Coxeter group. In the affine symmetric group, we have a combinatorial formula that generalizes D\'enes' formula for reflection length in the symmetric group.
@article{SLC_2018_80B_a50,
author = {Joel Brewster Lewis and Jon McCammond and T. Kyle Petersen and Petra Schwer},
title = {Computing {Reflection} {Length} in an {Affine} {Coxeter} {Group}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {80B},
year = {2018},
url = {http://geodesic.mathdoc.fr/item/SLC_2018_80B_a50/}
}
TY - JOUR AU - Joel Brewster Lewis AU - Jon McCammond AU - T. Kyle Petersen AU - Petra Schwer TI - Computing Reflection Length in an Affine Coxeter Group JO - Séminaire lotharingien de combinatoire PY - 2018 VL - 80B PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SLC_2018_80B_a50/ ID - SLC_2018_80B_a50 ER -
Joel Brewster Lewis; Jon McCammond; T. Kyle Petersen; Petra Schwer. Computing Reflection Length in an Affine Coxeter Group. Séminaire lotharingien de combinatoire, 80B (2018). http://geodesic.mathdoc.fr/item/SLC_2018_80B_a50/