Winnie-the-Pooh and the Strange Expectations
Séminaire lotharingien de combinatoire, 80B (2018) Cet article a éte moissonné depuis la source Séminaire Lotharingien de Combinatoire website

Voir la notice de l'acte

We prove that the expected norm of a weight in a highest weight representation g(λ) of a complex simple Lie algebra g is (1/(h+1))(λ,λ + 2ρ) by relating it to the "Winnie-the-Pooh problem." This proof method applies to all types except A and C; the same formula holds in these two remaining types, but we are forced to provide a direct computation.

@article{SLC_2018_80B_a49,
     author = {Marko Thiel and Nathan Williams},
     title = {Winnie-the-Pooh and the {Strange} {Expectations}},
     journal = {S\'eminaire lotharingien de combinatoire},
     year = {2018},
     volume = {80B},
     url = {http://geodesic.mathdoc.fr/item/SLC_2018_80B_a49/}
}
TY  - JOUR
AU  - Marko Thiel
AU  - Nathan Williams
TI  - Winnie-the-Pooh and the Strange Expectations
JO  - Séminaire lotharingien de combinatoire
PY  - 2018
VL  - 80B
UR  - http://geodesic.mathdoc.fr/item/SLC_2018_80B_a49/
ID  - SLC_2018_80B_a49
ER  - 
%0 Journal Article
%A Marko Thiel
%A Nathan Williams
%T Winnie-the-Pooh and the Strange Expectations
%J Séminaire lotharingien de combinatoire
%D 2018
%V 80B
%U http://geodesic.mathdoc.fr/item/SLC_2018_80B_a49/
%F SLC_2018_80B_a49
Marko Thiel; Nathan Williams. Winnie-the-Pooh and the Strange Expectations. Séminaire lotharingien de combinatoire, 80B (2018). http://geodesic.mathdoc.fr/item/SLC_2018_80B_a49/