Winnie-the-Pooh and the Strange Expectations
Séminaire lotharingien de combinatoire, 80B (2018)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

We prove that the expected norm of a weight in a highest weight representation g(λ) of a complex simple Lie algebra g is (1/(h+1))(λ,λ + 2ρ) by relating it to the "Winnie-the-Pooh problem." This proof method applies to all types except A and C; the same formula holds in these two remaining types, but we are forced to provide a direct computation.

@article{SLC_2018_80B_a49,
     author = {Marko Thiel and Nathan Williams},
     title = {Winnie-the-Pooh and the {Strange} {Expectations}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {80B},
     year = {2018},
     url = {http://geodesic.mathdoc.fr/item/SLC_2018_80B_a49/}
}
TY  - JOUR
AU  - Marko Thiel
AU  - Nathan Williams
TI  - Winnie-the-Pooh and the Strange Expectations
JO  - Séminaire lotharingien de combinatoire
PY  - 2018
VL  - 80B
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_2018_80B_a49/
ID  - SLC_2018_80B_a49
ER  - 
%0 Journal Article
%A Marko Thiel
%A Nathan Williams
%T Winnie-the-Pooh and the Strange Expectations
%J Séminaire lotharingien de combinatoire
%D 2018
%V 80B
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_2018_80B_a49/
%F SLC_2018_80B_a49
Marko Thiel; Nathan Williams. Winnie-the-Pooh and the Strange Expectations. Séminaire lotharingien de combinatoire, 80B (2018). http://geodesic.mathdoc.fr/item/SLC_2018_80B_a49/