The Cohomology of Abelian Hessenberg Varieties and the Stanley-Stembridge Conjecture
Séminaire lotharingien de combinatoire, 80B (2018)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
We define a subclass of Hessenberg varieties called abelian Hessenberg varieties, inspired by the theory of abelian ideals in a Lie algebra developed by Kostant and Peterson. We prove that the cohomology of an abelian regular semisimple Hessenberg variety, with respect to the symmetric group action defined by Tymoczko, is a non-negative combination of tabloid representations. Our result implies that a graded version of the Stanley-Stembridge conjecture holds in the abelian case. As part of our arguments, we obtain inductive formulas for the Betti numbers of regular Hessenberg varieties.
@article{SLC_2018_80B_a48,
author = {Megumi Harada and Martha Precup},
title = {The {Cohomology} of {Abelian} {Hessenberg} {Varieties} and the {Stanley-Stembridge} {Conjecture}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {80B},
year = {2018},
url = {http://geodesic.mathdoc.fr/item/SLC_2018_80B_a48/}
}
Megumi Harada; Martha Precup. The Cohomology of Abelian Hessenberg Varieties and the Stanley-Stembridge Conjecture. Séminaire lotharingien de combinatoire, 80B (2018). http://geodesic.mathdoc.fr/item/SLC_2018_80B_a48/