The Cohomology of Abelian Hessenberg Varieties and the Stanley-Stembridge Conjecture
Séminaire lotharingien de combinatoire, 80B (2018)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

We define a subclass of Hessenberg varieties called abelian Hessenberg varieties, inspired by the theory of abelian ideals in a Lie algebra developed by Kostant and Peterson. We prove that the cohomology of an abelian regular semisimple Hessenberg variety, with respect to the symmetric group action defined by Tymoczko, is a non-negative combination of tabloid representations. Our result implies that a graded version of the Stanley-Stembridge conjecture holds in the abelian case. As part of our arguments, we obtain inductive formulas for the Betti numbers of regular Hessenberg varieties.

@article{SLC_2018_80B_a48,
     author = {Megumi Harada and Martha Precup},
     title = {The {Cohomology} of {Abelian} {Hessenberg} {Varieties} and the {Stanley-Stembridge} {Conjecture}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {80B},
     year = {2018},
     url = {http://geodesic.mathdoc.fr/item/SLC_2018_80B_a48/}
}
TY  - JOUR
AU  - Megumi Harada
AU  - Martha Precup
TI  - The Cohomology of Abelian Hessenberg Varieties and the Stanley-Stembridge Conjecture
JO  - Séminaire lotharingien de combinatoire
PY  - 2018
VL  - 80B
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_2018_80B_a48/
ID  - SLC_2018_80B_a48
ER  - 
%0 Journal Article
%A Megumi Harada
%A Martha Precup
%T The Cohomology of Abelian Hessenberg Varieties and the Stanley-Stembridge Conjecture
%J Séminaire lotharingien de combinatoire
%D 2018
%V 80B
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_2018_80B_a48/
%F SLC_2018_80B_a48
Megumi Harada; Martha Precup. The Cohomology of Abelian Hessenberg Varieties and the Stanley-Stembridge Conjecture. Séminaire lotharingien de combinatoire, 80B (2018). http://geodesic.mathdoc.fr/item/SLC_2018_80B_a48/