K-Theoretic Pieri Rule via Iterated Residues
Séminaire lotharingien de combinatoire, 80B (2018)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
We prove a new formulation of the K-theoretic Pieri rule regarding multiplication of stable Grothendieck polynomials using iterated residues. We also deploy our method to establish straightening laws to transform Grothendieck polynomials corresponding to general integer sequences to linear combinations of those corresponding to partitions. The technique of iterated residues appears at once similar to raising operators; however, the connection to path integrals in the complex plane provides a different perspective.
@article{SLC_2018_80B_a47,
author = {Justin Allman and Rich\'ard Rim\'anyi},
title = {K-Theoretic {Pieri} {Rule} via {Iterated} {Residues}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {80B},
year = {2018},
url = {http://geodesic.mathdoc.fr/item/SLC_2018_80B_a47/}
}
Justin Allman; Richárd Rimányi. K-Theoretic Pieri Rule via Iterated Residues. Séminaire lotharingien de combinatoire, 80B (2018). http://geodesic.mathdoc.fr/item/SLC_2018_80B_a47/