K-Theoretic Pieri Rule via Iterated Residues
Séminaire lotharingien de combinatoire, 80B (2018) Cet article a éte moissonné depuis la source Séminaire Lotharingien de Combinatoire website

Voir la notice de l'acte

We prove a new formulation of the K-theoretic Pieri rule regarding multiplication of stable Grothendieck polynomials using iterated residues. We also deploy our method to establish straightening laws to transform Grothendieck polynomials corresponding to general integer sequences to linear combinations of those corresponding to partitions. The technique of iterated residues appears at once similar to raising operators; however, the connection to path integrals in the complex plane provides a different perspective.

@article{SLC_2018_80B_a47,
     author = {Justin Allman and Rich\'ard Rim\'anyi},
     title = {K-Theoretic {Pieri} {Rule} via {Iterated} {Residues}},
     journal = {S\'eminaire lotharingien de combinatoire},
     year = {2018},
     volume = {80B},
     url = {http://geodesic.mathdoc.fr/item/SLC_2018_80B_a47/}
}
TY  - JOUR
AU  - Justin Allman
AU  - Richárd Rimányi
TI  - K-Theoretic Pieri Rule via Iterated Residues
JO  - Séminaire lotharingien de combinatoire
PY  - 2018
VL  - 80B
UR  - http://geodesic.mathdoc.fr/item/SLC_2018_80B_a47/
ID  - SLC_2018_80B_a47
ER  - 
%0 Journal Article
%A Justin Allman
%A Richárd Rimányi
%T K-Theoretic Pieri Rule via Iterated Residues
%J Séminaire lotharingien de combinatoire
%D 2018
%V 80B
%U http://geodesic.mathdoc.fr/item/SLC_2018_80B_a47/
%F SLC_2018_80B_a47
Justin Allman; Richárd Rimányi. K-Theoretic Pieri Rule via Iterated Residues. Séminaire lotharingien de combinatoire, 80B (2018). http://geodesic.mathdoc.fr/item/SLC_2018_80B_a47/