Multiline Queues with Spectral Parameters
Séminaire lotharingien de combinatoire, 80B (2018)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
Using the description of multiline queues as functions on words, we introduce the notion of a spectral weight of a word by defining a new weighting on multiline queues. We show that the spectral weight of a word is invariant under a natural action of the symmetric group, giving a proof of the commutativity conjecture of Arita, Ayyer, Mallick, and Prolhac. We give a determinant formula for the spectral weight of a word, which gives a proof of a conjecture of the first author and Linusson.
@article{SLC_2018_80B_a45,
author = {Erik Aas and Darij Grinberg and Travis Scrimshaw},
title = {Multiline {Queues} with {Spectral} {Parameters}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {80B},
year = {2018},
url = {http://geodesic.mathdoc.fr/item/SLC_2018_80B_a45/}
}
Erik Aas; Darij Grinberg; Travis Scrimshaw. Multiline Queues with Spectral Parameters. Séminaire lotharingien de combinatoire, 80B (2018). http://geodesic.mathdoc.fr/item/SLC_2018_80B_a45/