On Positroids Induced by Rational Dyck Paths
Séminaire lotharingien de combinatoire, 80B (2018)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

A rational Dyck path of type (m,d) is an increasing unit-step lattice path from (0,0) to (m,d) in Z2 that never goes above the diagonal line y = (d/m)x. On the other hand, a positroid of rank d on the ground set [d+m] is a special type of matroid coming from the totally nonnegative Grassmannian. In this paper we describe how to naturally assign a rank d positroid on the ground set [d+m], which we name rational Dyck positroid, to each rational Dyck path of type (m,d). Positroids can be parameterized by several families of combinatorial objects. Here we characterize some of these families for the positroids we produce, namely, decorated permutations, Le-diagrams, and move-equivalence classes of plabic graphs. Finally, we describe the matroid polytope of a given rational Dyck positroid.

@article{SLC_2018_80B_a43,
     author = {Felix Gotti},
     title = {On {Positroids} {Induced} by {Rational} {Dyck} {Paths}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {80B},
     year = {2018},
     url = {http://geodesic.mathdoc.fr/item/SLC_2018_80B_a43/}
}
TY  - JOUR
AU  - Felix Gotti
TI  - On Positroids Induced by Rational Dyck Paths
JO  - Séminaire lotharingien de combinatoire
PY  - 2018
VL  - 80B
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_2018_80B_a43/
ID  - SLC_2018_80B_a43
ER  - 
%0 Journal Article
%A Felix Gotti
%T On Positroids Induced by Rational Dyck Paths
%J Séminaire lotharingien de combinatoire
%D 2018
%V 80B
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_2018_80B_a43/
%F SLC_2018_80B_a43
Felix Gotti. On Positroids Induced by Rational Dyck Paths. Séminaire lotharingien de combinatoire, 80B (2018). http://geodesic.mathdoc.fr/item/SLC_2018_80B_a43/