Stability of the Heisenberg Product on Symmetric Functions
Séminaire lotharingien de combinatoire, 80B (2018)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

The Heisenberg product is an associative product defined on symmetric functions which interpolates between the usual product and the Kronecker product. In 1938, Murnaghan discovered that the Kronecker product of two Schur functions stabilizes. We prove an analogous result for the Heisenberg product of Schur functions. We also show a rectangular symmetry for the Schur structural constants of this product.

@article{SLC_2018_80B_a41,
     author = {Li Ying},
     title = {Stability of the {Heisenberg} {Product} on {Symmetric} {Functions}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {80B},
     year = {2018},
     url = {http://geodesic.mathdoc.fr/item/SLC_2018_80B_a41/}
}
TY  - JOUR
AU  - Li Ying
TI  - Stability of the Heisenberg Product on Symmetric Functions
JO  - Séminaire lotharingien de combinatoire
PY  - 2018
VL  - 80B
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_2018_80B_a41/
ID  - SLC_2018_80B_a41
ER  - 
%0 Journal Article
%A Li Ying
%T Stability of the Heisenberg Product on Symmetric Functions
%J Séminaire lotharingien de combinatoire
%D 2018
%V 80B
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_2018_80B_a41/
%F SLC_2018_80B_a41
Li Ying. Stability of the Heisenberg Product on Symmetric Functions. Séminaire lotharingien de combinatoire, 80B (2018). http://geodesic.mathdoc.fr/item/SLC_2018_80B_a41/