A Combinatorial Formula for Macdonald Cumulants
Séminaire lotharingien de combinatoire, 80B (2018)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
Macdonald cumulants are symmetric functions that generalize Macdonald polynomials. We prove a combinatorial formula for them which extends the celebrated formula of Haglund for Macdonald polynomials. We also provide several applications of our formula -- it gives a new, constructive proof of a strong factorization property of Macdonald polynomials and it proves that Macdonald cumulants are q,t-positive in the monomial and in the fundamental quasisymmetric bases. Furthermore, we use our formula to prove the recent higher-order Macdonald positivity conjecture for the coefficients of the Schur polynomials indexed by hooks. Our combinatorial formula links Macdonald cumulants to G-parking functions of Postnikov and Shapiro.
@article{SLC_2018_80B_a40,
author = {Maciej Do{\l}\k{e}ga},
title = {A {Combinatorial} {Formula} for {Macdonald} {Cumulants}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {80B},
year = {2018},
url = {http://geodesic.mathdoc.fr/item/SLC_2018_80B_a40/}
}
Maciej Dołęga. A Combinatorial Formula for Macdonald Cumulants. Séminaire lotharingien de combinatoire, 80B (2018). http://geodesic.mathdoc.fr/item/SLC_2018_80B_a40/