Shuffle-Compatible Descent Statistics and Quotients of Quasisymmetric Functions
Séminaire lotharingien de combinatoire, 80B (2018)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
We study shuffle-compatible permutation statistics: permutation statistics st with the property that the distribution of st over all shuffles of two permutations π and σ is completely determined by st(π), st(σ), and the lengths of π and σ. We develop a theory of shuffle-compatibility for descent statistics---permutation statistics that depend only on the descent set and length---and its connections to P-partitions, quasisymmetric functions, and noncommutative symmetric functions.
@article{SLC_2018_80B_a4,
author = {Ira M. Gessel and Yan Zhuang},
title = {Shuffle-Compatible {Descent} {Statistics} and {Quotients} of {Quasisymmetric} {Functions}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {80B},
year = {2018},
url = {http://geodesic.mathdoc.fr/item/SLC_2018_80B_a4/}
}
Ira M. Gessel; Yan Zhuang. Shuffle-Compatible Descent Statistics and Quotients of Quasisymmetric Functions. Séminaire lotharingien de combinatoire, 80B (2018). http://geodesic.mathdoc.fr/item/SLC_2018_80B_a4/