Cylindric Reverse Plane Partitions and 2D TQFT
Séminaire lotharingien de combinatoire, 80B (2018)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
The ring of symmetric functions carries the structure of a Hopf algebra. When computing the coproduct of complete symmetric functions hλ one arrives at weighted sums over reverse plane partitions (RPP) involving binomial coefficients. Employing the action of the extended affine symmetric group at fixed level n we generalise these weighted sums to cylindric RPP and define cylindric complete symmetric functions. The latter are shown to be h-positive, that is, their expansions coefficients in the basis of complete symmetric functions are non-negative integers. We state an explicit formula in terms of tensor multiplicities for irreducible representations of the generalised symmetric group. Moreover, we relate the complete symmetric functions to a 2D topological quantum field theory (TQFT) that is a generalisation of the celebrated sl~n-Verlinde algebra or Wess-Zumino-Witten fusion ring, which plays a prominent role in the context of vertex operator algebras and algebraic geometry.
@article{SLC_2018_80B_a29,
author = {Christian Korff and David Palazzo},
title = {Cylindric {Reverse} {Plane} {Partitions} and {2D} {TQFT}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {80B},
year = {2018},
url = {http://geodesic.mathdoc.fr/item/SLC_2018_80B_a29/}
}
Christian Korff; David Palazzo. Cylindric Reverse Plane Partitions and 2D TQFT. Séminaire lotharingien de combinatoire, 80B (2018). http://geodesic.mathdoc.fr/item/SLC_2018_80B_a29/