Hook Length Property of d-Complete Posets via q-Integrals
Séminaire lotharingien de combinatoire, 80B (2018)
Cet article a éte moissonné depuis la source Séminaire Lotharingien de Combinatoire website
The hook length formula for d-complete posets states that the P-partition generating function for them is given by a product in terms of hook lengths. We give a new proof of the hook length formula of d-complete posets using q-integrals. Proctor proved that any connected d-complete poset can be uniquely decomposed into irreducible d-complete posets and classified all irreducible d-complete posets. In this work, we prove the hook length property of all the irreducible d-complete posets. The proof is done by a case-by-case analysis consisting of two steps. First, we express the P-partition generating function for each case as a q-integral and then we evaluate the q-integrals.
@article{SLC_2018_80B_a27,
author = {Jang Soo Kim and Meesue Yoo},
title = {Hook {Length} {Property} of {d-Complete} {Posets} via {q-Integrals}},
journal = {S\'eminaire lotharingien de combinatoire},
year = {2018},
volume = {80B},
url = {http://geodesic.mathdoc.fr/item/SLC_2018_80B_a27/}
}
Jang Soo Kim; Meesue Yoo. Hook Length Property of d-Complete Posets via q-Integrals. Séminaire lotharingien de combinatoire, 80B (2018). http://geodesic.mathdoc.fr/item/SLC_2018_80B_a27/