Proof of Chapoton's cCnjecture on Newton Polygons of q-Ehrhart polynomials
Séminaire lotharingien de combinatoire, 80B (2018)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

Recently, Chapoton found a q-analog of Ehrhart polynomials, which are polynomials in x whose coefficients are rational functions in q. Chapoton conjectured the shape of the Newton polygon of the numerator of the q-Ehrhart polynomial of an order polytope. In this paper, we prove Chapoton's conjecture.

@article{SLC_2018_80B_a26,
     author = {Jang Soo Kim and U-Keun Song},
     title = {Proof of {Chapoton's} {cCnjecture} on {Newton} {Polygons} of {q-Ehrhart} polynomials},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {80B},
     year = {2018},
     url = {http://geodesic.mathdoc.fr/item/SLC_2018_80B_a26/}
}
TY  - JOUR
AU  - Jang Soo Kim
AU  - U-Keun Song
TI  - Proof of Chapoton's cCnjecture on Newton Polygons of q-Ehrhart polynomials
JO  - Séminaire lotharingien de combinatoire
PY  - 2018
VL  - 80B
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_2018_80B_a26/
ID  - SLC_2018_80B_a26
ER  - 
%0 Journal Article
%A Jang Soo Kim
%A U-Keun Song
%T Proof of Chapoton's cCnjecture on Newton Polygons of q-Ehrhart polynomials
%J Séminaire lotharingien de combinatoire
%D 2018
%V 80B
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_2018_80B_a26/
%F SLC_2018_80B_a26
Jang Soo Kim; U-Keun Song. Proof of Chapoton's cCnjecture on Newton Polygons of q-Ehrhart polynomials. Séminaire lotharingien de combinatoire, 80B (2018). http://geodesic.mathdoc.fr/item/SLC_2018_80B_a26/