The Totally Nonnegative Grassmannian is a Ball
Séminaire lotharingien de combinatoire, 80B (2018)
Cet article a éte moissonné depuis la source Séminaire Lotharingien de Combinatoire website

Voir la notice de l'acte

We prove that three spaces of importance in topological combinatorics are homeomorphic to closed balls: the totally nonnegative Grassmannian, the compactification of the space of electrical networks, and the cyclically symmetric amplituhedron.

@article{SLC_2018_80B_a22,
     author = {Pavel Galashin and Steven N. Karp and Thomas Lam},
     title = {The {Totally} {Nonnegative} {Grassmannian} is a {Ball}},
     journal = {S\'eminaire lotharingien de combinatoire},
     year = {2018},
     volume = {80B},
     url = {http://geodesic.mathdoc.fr/item/SLC_2018_80B_a22/}
}
TY  - JOUR
AU  - Pavel Galashin
AU  - Steven N. Karp
AU  - Thomas Lam
TI  - The Totally Nonnegative Grassmannian is a Ball
JO  - Séminaire lotharingien de combinatoire
PY  - 2018
VL  - 80B
UR  - http://geodesic.mathdoc.fr/item/SLC_2018_80B_a22/
ID  - SLC_2018_80B_a22
ER  - 
%0 Journal Article
%A Pavel Galashin
%A Steven N. Karp
%A Thomas Lam
%T The Totally Nonnegative Grassmannian is a Ball
%J Séminaire lotharingien de combinatoire
%D 2018
%V 80B
%U http://geodesic.mathdoc.fr/item/SLC_2018_80B_a22/
%F SLC_2018_80B_a22
Pavel Galashin; Steven N. Karp; Thomas Lam. The Totally Nonnegative Grassmannian is a Ball. Séminaire lotharingien de combinatoire, 80B (2018). http://geodesic.mathdoc.fr/item/SLC_2018_80B_a22/