Root System Chip-Firing
Séminaire lotharingien de combinatoire, 80B (2018)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

Propp recently introduced a variant of chip-firing on the infinite path where the chips are given distinct integer labels and conjectured that this process is confluent from certain (but not all) initial configurations of chips. Hopkins, McConville, and Propp proved Propp's confluence conjecture. We recast this result in terms of root systems: the labeled chip-firing game can be seen as a process which allows replacing an integer vector λ by λ+α whenever λ is orthogonal to α, for α a positive root of a root system of Type A. We give conjectures about confluence for this process in the general setting of an arbitrary root system. We show that the process is always confluent from any initial point after modding out by the action of the Weyl group (an analog of unlabeled chip-firing in arbitrary type). We also study some remarkable deformations of this process which are confluent from any initial point. For these deformations, the set of weights with given stabilization has an interesting geometric structure related to permutohedra. This geometric structure leads us to define certain "Ehrhart-like" polynomials that conjecturally have nonnegative integer coefficients.

@article{SLC_2018_80B_a20,
     author = {Pavel Galashin and Sam Hopkins and Thomas McConville and Alexander Postnikov},
     title = {Root {System} {Chip-Firing}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {80B},
     year = {2018},
     url = {http://geodesic.mathdoc.fr/item/SLC_2018_80B_a20/}
}
TY  - JOUR
AU  - Pavel Galashin
AU  - Sam Hopkins
AU  - Thomas McConville
AU  - Alexander Postnikov
TI  - Root System Chip-Firing
JO  - Séminaire lotharingien de combinatoire
PY  - 2018
VL  - 80B
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_2018_80B_a20/
ID  - SLC_2018_80B_a20
ER  - 
%0 Journal Article
%A Pavel Galashin
%A Sam Hopkins
%A Thomas McConville
%A Alexander Postnikov
%T Root System Chip-Firing
%J Séminaire lotharingien de combinatoire
%D 2018
%V 80B
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_2018_80B_a20/
%F SLC_2018_80B_a20
Pavel Galashin; Sam Hopkins; Thomas McConville; Alexander Postnikov. Root System Chip-Firing. Séminaire lotharingien de combinatoire, 80B (2018). http://geodesic.mathdoc.fr/item/SLC_2018_80B_a20/