A Bijective Proof and Generalization of Siladić's Theorem
Séminaire lotharingien de combinatoire, 80B (2018)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

In a recent paper, Dousse introduced a refinement of Siladić's theorem on partitions, where parts occur in two primary and three secondary colors. Her proof used the method of weighted words and $q$-difference equations. The purpose of this extended abstract is to sketch a bijective proof of Dousse's theorem and show how it can be generalized from two primary colors to an arbitrary number of primary colors.

@article{SLC_2018_80B_a2,
     author = {Isaac Konan},
     title = {A {Bijective} {Proof} and {Generalization} of {Siladi\'c's} {Theorem}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {80B},
     year = {2018},
     url = {http://geodesic.mathdoc.fr/item/SLC_2018_80B_a2/}
}
TY  - JOUR
AU  - Isaac Konan
TI  - A Bijective Proof and Generalization of Siladić's Theorem
JO  - Séminaire lotharingien de combinatoire
PY  - 2018
VL  - 80B
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_2018_80B_a2/
ID  - SLC_2018_80B_a2
ER  - 
%0 Journal Article
%A Isaac Konan
%T A Bijective Proof and Generalization of Siladić's Theorem
%J Séminaire lotharingien de combinatoire
%D 2018
%V 80B
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_2018_80B_a2/
%F SLC_2018_80B_a2
Isaac Konan. A Bijective Proof and Generalization of Siladić's Theorem. Séminaire lotharingien de combinatoire, 80B (2018). http://geodesic.mathdoc.fr/item/SLC_2018_80B_a2/