A Bijective Proof and Generalization of Siladić's Theorem
Séminaire lotharingien de combinatoire, 80B (2018)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
In a recent paper, Dousse introduced a refinement of Siladić's theorem on partitions, where parts occur in two primary and three secondary colors. Her proof used the method of weighted words and $q$-difference equations. The purpose of this extended abstract is to sketch a bijective proof of Dousse's theorem and show how it can be generalized from two primary colors to an arbitrary number of primary colors.
@article{SLC_2018_80B_a2,
author = {Isaac Konan},
title = {A {Bijective} {Proof} and {Generalization} of {Siladi\'c's} {Theorem}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {80B},
year = {2018},
url = {http://geodesic.mathdoc.fr/item/SLC_2018_80B_a2/}
}
Isaac Konan. A Bijective Proof and Generalization of Siladić's Theorem. Séminaire lotharingien de combinatoire, 80B (2018). http://geodesic.mathdoc.fr/item/SLC_2018_80B_a2/