On a Variant of Lien
Séminaire lotharingien de combinatoire, 80B (2018)
Cet article a éte moissonné depuis la source Séminaire Lotharingien de Combinatoire website
We introduce a new Sn-module Lien(2) which interpolates between the representation Lien of the symmetric group Sn afforded by the free Lie algebra, and the module Conjn of the conjugacy action of Sn on n-cycles.
Using plethystic identities from our previous work, we establish a decomposition of the regular representation as a sum of exterior powers of the modules Lien(2). By contrast, the classical result of Thrall decomposes the regular representation into a sum of symmetric powers of the representation Lien. We show that nearly every known property of Lien in the literature appears to have a counterpart for Lien(2), suggesting connections to the cohomology of configuration spaces and other areas.
The construction of Lien(2) can be generalised to a module LienS indexed by subsets S of distinct primes. This in turn yields new Schur-positivity results for multiplicity-free sums of power sums, extending our previous results.
@article{SLC_2018_80B_a18,
author = {Sheila Sundaram},
title = {On a {Variant} of {Lien}},
journal = {S\'eminaire lotharingien de combinatoire},
year = {2018},
volume = {80B},
url = {http://geodesic.mathdoc.fr/item/SLC_2018_80B_a18/}
}
Sheila Sundaram. On a Variant of Lien. Séminaire lotharingien de combinatoire, 80B (2018). http://geodesic.mathdoc.fr/item/SLC_2018_80B_a18/