On a Variant of Lien
Séminaire lotharingien de combinatoire, 80B (2018)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

We introduce a new Sn-module Lien(2) which interpolates between the representation Lien of the symmetric group Sn afforded by the free Lie algebra, and the module Conjn of the conjugacy action of Sn on n-cycles.

Using plethystic identities from our previous work, we establish a decomposition of the regular representation as a sum of exterior powers of the modules Lien(2). By contrast, the classical result of Thrall decomposes the regular representation into a sum of symmetric powers of the representation Lien. We show that nearly every known property of Lien in the literature appears to have a counterpart for Lien(2), suggesting connections to the cohomology of configuration spaces and other areas.

The construction of Lien(2) can be generalised to a module LienS indexed by subsets S of distinct primes. This in turn yields new Schur-positivity results for multiplicity-free sums of power sums, extending our previous results.

@article{SLC_2018_80B_a18,
     author = {Sheila Sundaram},
     title = {On a {Variant} of {Lien}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {80B},
     year = {2018},
     url = {http://geodesic.mathdoc.fr/item/SLC_2018_80B_a18/}
}
TY  - JOUR
AU  - Sheila Sundaram
TI  - On a Variant of Lien
JO  - Séminaire lotharingien de combinatoire
PY  - 2018
VL  - 80B
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_2018_80B_a18/
ID  - SLC_2018_80B_a18
ER  - 
%0 Journal Article
%A Sheila Sundaram
%T On a Variant of Lien
%J Séminaire lotharingien de combinatoire
%D 2018
%V 80B
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_2018_80B_a18/
%F SLC_2018_80B_a18
Sheila Sundaram. On a Variant of Lien. Séminaire lotharingien de combinatoire, 80B (2018). http://geodesic.mathdoc.fr/item/SLC_2018_80B_a18/