Schur-positivity of Equitable Ribbons
Séminaire lotharingien de combinatoire, 80B (2018)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

We study the Schur-positivity poset and its conjectured maximal connected elements, which are certain equitable ribbon Schur functions. In particular, we establish sufficient conditions for the difference of two ribbon Schur functions to be Schur-positive, and we deduce necessary conditions for the difference of two equitable ribbon Schur functions to be Schur-positive. We use this to confirm conjectures on maximal and minimal equitable ribbon Schur functions for many cases, including all chains.

@article{SLC_2018_80B_a17,
     author = {Foster Tom and Stephanie van Willigenburg},
     title = {Schur-positivity of {Equitable} {Ribbons}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {80B},
     year = {2018},
     url = {http://geodesic.mathdoc.fr/item/SLC_2018_80B_a17/}
}
TY  - JOUR
AU  - Foster Tom
AU  - Stephanie van Willigenburg
TI  - Schur-positivity of Equitable Ribbons
JO  - Séminaire lotharingien de combinatoire
PY  - 2018
VL  - 80B
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_2018_80B_a17/
ID  - SLC_2018_80B_a17
ER  - 
%0 Journal Article
%A Foster Tom
%A Stephanie van Willigenburg
%T Schur-positivity of Equitable Ribbons
%J Séminaire lotharingien de combinatoire
%D 2018
%V 80B
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_2018_80B_a17/
%F SLC_2018_80B_a17
Foster Tom; Stephanie van Willigenburg. Schur-positivity of Equitable Ribbons. Séminaire lotharingien de combinatoire, 80B (2018). http://geodesic.mathdoc.fr/item/SLC_2018_80B_a17/