Schur-positivity of Equitable Ribbons
Séminaire lotharingien de combinatoire, 80B (2018)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
We study the Schur-positivity poset and its conjectured maximal connected elements, which are certain equitable ribbon Schur functions. In particular, we establish sufficient conditions for the difference of two ribbon Schur functions to be Schur-positive, and we deduce necessary conditions for the difference of two equitable ribbon Schur functions to be Schur-positive. We use this to confirm conjectures on maximal and minimal equitable ribbon Schur functions for many cases, including all chains.
@article{SLC_2018_80B_a17,
author = {Foster Tom and Stephanie van Willigenburg},
title = {Schur-positivity of {Equitable} {Ribbons}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {80B},
year = {2018},
url = {http://geodesic.mathdoc.fr/item/SLC_2018_80B_a17/}
}
Foster Tom; Stephanie van Willigenburg. Schur-positivity of Equitable Ribbons. Séminaire lotharingien de combinatoire, 80B (2018). http://geodesic.mathdoc.fr/item/SLC_2018_80B_a17/