Cyclically Symmetric Lozenge Tilings of a Hexagon with Four Holes
Séminaire lotharingien de combinatoire, 80B (2018)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

Mills, Robbins, and Rumsey's work on cyclically symmetric plane partitions yields a simple product formula for the number of lozenge tilings of a regular hexagon, which are invariant under rotation by 120o. In this extended abstract, we generalize this result by enumerating the cyclically symmetric lozenge tilings of a hexagon in which four triangles have been removed in a symmetric way.

@article{SLC_2018_80B_a16,
     author = {Tri Lai and Ranjan Rohatgi},
     title = {Cyclically {Symmetric} {Lozenge} {Tilings} of a {Hexagon} with {Four} {Holes}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {80B},
     year = {2018},
     url = {http://geodesic.mathdoc.fr/item/SLC_2018_80B_a16/}
}
TY  - JOUR
AU  - Tri Lai
AU  - Ranjan Rohatgi
TI  - Cyclically Symmetric Lozenge Tilings of a Hexagon with Four Holes
JO  - Séminaire lotharingien de combinatoire
PY  - 2018
VL  - 80B
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_2018_80B_a16/
ID  - SLC_2018_80B_a16
ER  - 
%0 Journal Article
%A Tri Lai
%A Ranjan Rohatgi
%T Cyclically Symmetric Lozenge Tilings of a Hexagon with Four Holes
%J Séminaire lotharingien de combinatoire
%D 2018
%V 80B
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_2018_80B_a16/
%F SLC_2018_80B_a16
Tri Lai; Ranjan Rohatgi. Cyclically Symmetric Lozenge Tilings of a Hexagon with Four Holes. Séminaire lotharingien de combinatoire, 80B (2018). http://geodesic.mathdoc.fr/item/SLC_2018_80B_a16/