Cyclically Symmetric Lozenge Tilings of a Hexagon with Four Holes
    
    
  
  
  
      
      
      
        
Séminaire lotharingien de combinatoire, 80B (2018)
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
            
              Mills, Robbins, and Rumsey's work on cyclically symmetric plane partitions yields a simple product formula for the number of lozenge tilings of a regular hexagon, which are invariant under rotation by 120o. In this extended abstract, we generalize this result by enumerating the cyclically symmetric lozenge tilings of a hexagon in which four triangles have been removed in a symmetric way. 
 
        
      
@article{SLC_2018_80B_a16,
     author = {Tri Lai and Ranjan Rohatgi},
     title = {Cyclically {Symmetric} {Lozenge} {Tilings} of a {Hexagon} with {Four} {Holes}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {80B},
     year = {2018},
     url = {http://geodesic.mathdoc.fr/item/SLC_2018_80B_a16/}
}
                      
                      
                    Tri Lai; Ranjan Rohatgi. Cyclically Symmetric Lozenge Tilings of a Hexagon with Four Holes. Séminaire lotharingien de combinatoire, 80B (2018). http://geodesic.mathdoc.fr/item/SLC_2018_80B_a16/