Cyclically Symmetric Lozenge Tilings of a Hexagon with Four Holes
Séminaire lotharingien de combinatoire, 80B (2018) Cet article a éte moissonné depuis la source Séminaire Lotharingien de Combinatoire website

Voir la notice de l'acte

Mills, Robbins, and Rumsey's work on cyclically symmetric plane partitions yields a simple product formula for the number of lozenge tilings of a regular hexagon, which are invariant under rotation by 120o. In this extended abstract, we generalize this result by enumerating the cyclically symmetric lozenge tilings of a hexagon in which four triangles have been removed in a symmetric way.

@article{SLC_2018_80B_a16,
     author = {Tri Lai and Ranjan Rohatgi},
     title = {Cyclically {Symmetric} {Lozenge} {Tilings} of a {Hexagon} with {Four} {Holes}},
     journal = {S\'eminaire lotharingien de combinatoire},
     year = {2018},
     volume = {80B},
     url = {http://geodesic.mathdoc.fr/item/SLC_2018_80B_a16/}
}
TY  - JOUR
AU  - Tri Lai
AU  - Ranjan Rohatgi
TI  - Cyclically Symmetric Lozenge Tilings of a Hexagon with Four Holes
JO  - Séminaire lotharingien de combinatoire
PY  - 2018
VL  - 80B
UR  - http://geodesic.mathdoc.fr/item/SLC_2018_80B_a16/
ID  - SLC_2018_80B_a16
ER  - 
%0 Journal Article
%A Tri Lai
%A Ranjan Rohatgi
%T Cyclically Symmetric Lozenge Tilings of a Hexagon with Four Holes
%J Séminaire lotharingien de combinatoire
%D 2018
%V 80B
%U http://geodesic.mathdoc.fr/item/SLC_2018_80B_a16/
%F SLC_2018_80B_a16
Tri Lai; Ranjan Rohatgi. Cyclically Symmetric Lozenge Tilings of a Hexagon with Four Holes. Séminaire lotharingien de combinatoire, 80B (2018). http://geodesic.mathdoc.fr/item/SLC_2018_80B_a16/