Cyclically Symmetric Lozenge Tilings of a Hexagon with Four Holes
Séminaire lotharingien de combinatoire, 80B (2018)
Cet article a éte moissonné depuis la source Séminaire Lotharingien de Combinatoire website
Mills, Robbins, and Rumsey's work on cyclically symmetric plane partitions yields a simple product formula for the number of lozenge tilings of a regular hexagon, which are invariant under rotation by 120o. In this extended abstract, we generalize this result by enumerating the cyclically symmetric lozenge tilings of a hexagon in which four triangles have been removed in a symmetric way.
@article{SLC_2018_80B_a16,
author = {Tri Lai and Ranjan Rohatgi},
title = {Cyclically {Symmetric} {Lozenge} {Tilings} of a {Hexagon} with {Four} {Holes}},
journal = {S\'eminaire lotharingien de combinatoire},
year = {2018},
volume = {80B},
url = {http://geodesic.mathdoc.fr/item/SLC_2018_80B_a16/}
}
Tri Lai; Ranjan Rohatgi. Cyclically Symmetric Lozenge Tilings of a Hexagon with Four Holes. Séminaire lotharingien de combinatoire, 80B (2018). http://geodesic.mathdoc.fr/item/SLC_2018_80B_a16/