One-Dimensional Packing: Maximality Implies Rationality
Séminaire lotharingien de combinatoire, 80B (2018)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
Every set of natural numbers determines a generating function convergent for q in (-1,1) whose behavior as q -> 1- determines a germ. These germs admit a natural partial ordering that can be used to compare sizes of sets of natural numbers in a manner that generalizes both cardinality of finite sets and density of infinite sets. For any finite set D of positive integers, call a set S "D-avoiding" if no two elements of S differ by an element of D. It is shown that any D-avoiding set that is maximal in the class of D-avoiding sets (with respect to germ-ordering) is eventually periodic. This implies an analogous result for packings in N. It is conjectured that for all finite D there is a unique maximal D-avoiding set.
@article{SLC_2018_80B_a15,
author = {James Propp},
title = {One-Dimensional {Packing:} {Maximality} {Implies} {Rationality}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {80B},
year = {2018},
url = {http://geodesic.mathdoc.fr/item/SLC_2018_80B_a15/}
}
James Propp. One-Dimensional Packing: Maximality Implies Rationality. Séminaire lotharingien de combinatoire, 80B (2018). http://geodesic.mathdoc.fr/item/SLC_2018_80B_a15/