Schur Polynomials, Entrywise Positivity Preservers, and Weak Majorization
Séminaire lotharingien de combinatoire, 80B (2018)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
We prove a monotonicity phenomenon for ratios of Schur polynomials. In this we are motivated by - and apply our result to - understanding polynomials and power series that preserve positive semidefiniteness (psd) when applied entrywise to psd matrices. We then extend these results to classify polynomial preservers of total positivity. As a further application, we extend a conjecture of Cuttler, Greene, and Skandera (2011) to obtain a novel characterization of weak majorization using Schur polynomials. Our proofs proceed through a Schur positivity result of Lam, Postnikov, and Pylyavskyy (2007), and computing the leading terms of Schur polynomials.
@article{SLC_2018_80B_a13,
author = {Apoorva Khare and Terence Tao},
title = {Schur {Polynomials,} {Entrywise} {Positivity} {Preservers,} and {Weak} {Majorization}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {80B},
year = {2018},
url = {http://geodesic.mathdoc.fr/item/SLC_2018_80B_a13/}
}
Apoorva Khare; Terence Tao. Schur Polynomials, Entrywise Positivity Preservers, and Weak Majorization. Séminaire lotharingien de combinatoire, 80B (2018). http://geodesic.mathdoc.fr/item/SLC_2018_80B_a13/