A Bijective Proof of the Hook-Length Formula for Skew Shapes
Séminaire lotharingien de combinatoire, 80B (2018)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

Recently, Naruse presented a beautiful cancellation-free hook-length formula for skew shapes. The formula involves a sum over objects called excited diagrams, and the term corresponding to each excited diagram has hook lengths in the denominator, like the classical hook-length formula due to Frame, Robinson and Thrall.

In this extended abstract, we present a simple bijection that proves an equivalent recursive version of Naruse's result, in the same way that the celebrated hook-walk proof due to Green, Nijenhuis and Wilf gives a bijective (or probabilistic) proof of the hook-length formula for ordinary shapes. In particular, we also give a new bijective proof of the classical hook-length formula, quite different from the known proofs.

@article{SLC_2018_80B_a12,
     author = {Matja\v{z} Konvalinka},
     title = {A {Bijective} {Proof} of the {Hook-Length} {Formula} for {Skew} {Shapes}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {80B},
     year = {2018},
     url = {http://geodesic.mathdoc.fr/item/SLC_2018_80B_a12/}
}
TY  - JOUR
AU  - Matjaž Konvalinka
TI  - A Bijective Proof of the Hook-Length Formula for Skew Shapes
JO  - Séminaire lotharingien de combinatoire
PY  - 2018
VL  - 80B
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_2018_80B_a12/
ID  - SLC_2018_80B_a12
ER  - 
%0 Journal Article
%A Matjaž Konvalinka
%T A Bijective Proof of the Hook-Length Formula for Skew Shapes
%J Séminaire lotharingien de combinatoire
%D 2018
%V 80B
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_2018_80B_a12/
%F SLC_2018_80B_a12
Matjaž Konvalinka. A Bijective Proof of the Hook-Length Formula for Skew Shapes. Séminaire lotharingien de combinatoire, 80B (2018). http://geodesic.mathdoc.fr/item/SLC_2018_80B_a12/