Hall-Littlewood Expansions of Schur Delta Operators at t=0
Séminaire lotharingien de combinatoire, Tome 79 (2018-2023)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

For any Schur function sν, the associated delta operator Δ'sν is a linear operator on the ring of symmetric functions which has the modified Macdonald polynomials as an eigenbasis. When ν = (1n-1) is a column of length n-1, the symmetric function Δ'en-1en appears in the Shuffle Theorem of Carlsson and Mellit. More generally, when ν = (1k-1) is any column the polynomial Δ'ek-1en is the symmetric function side of the Delta Conjecture of Haglund, Remmel, and Wilson. We give an expansion of ωΔ'sνen at t=0 in the dual Hall-Littlewood basis for any partition ν. The Delta Conjecture at t=0 was recently proven by Garsia, Haglund, Remmel, and Yoo; our methods give a new proof of this result. We give an algebraic interpretation of ωΔ'sνen at t=0 in terms of a Hom-space.

@article{SLC_2018-2023_79_a2,
     author = {James Haglund and Brendon Rhoades and Mark Shimozono},
     title = {Hall-Littlewood {Expansions} of {Schur} {Delta} {Operators} at t=0},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {79},
     year = {2018-2023},
     url = {http://geodesic.mathdoc.fr/item/SLC_2018-2023_79_a2/}
}
TY  - JOUR
AU  - James Haglund
AU  - Brendon Rhoades
AU  - Mark Shimozono
TI  - Hall-Littlewood Expansions of Schur Delta Operators at t=0
JO  - Séminaire lotharingien de combinatoire
PY  - 2018-2023
VL  - 79
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_2018-2023_79_a2/
ID  - SLC_2018-2023_79_a2
ER  - 
%0 Journal Article
%A James Haglund
%A Brendon Rhoades
%A Mark Shimozono
%T Hall-Littlewood Expansions of Schur Delta Operators at t=0
%J Séminaire lotharingien de combinatoire
%D 2018-2023
%V 79
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_2018-2023_79_a2/
%F SLC_2018-2023_79_a2
James Haglund; Brendon Rhoades; Mark Shimozono. Hall-Littlewood Expansions of Schur Delta Operators at t=0. Séminaire lotharingien de combinatoire, Tome 79 (2018-2023). http://geodesic.mathdoc.fr/item/SLC_2018-2023_79_a2/