Conway Groupoids, Regular Two-Graphs and Supersimple Designs
Séminaire lotharingien de combinatoire, Tome 79 (2018-2023)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
A 2-(n,4,λ) design (Ω,B) is said to be supersimple if distinct lines intersect in at most two points. From such a design, one can construct a certain subset of Sym(Ω) called a "Conway groupoid". The construction generalizes Conway's construction of the groupoid M13. % One would like to classify all of the Conway groupoids constructed using supersimple designs. In this paper we classify a particular subclass, consisting of those groupoids which satisfy two additional properties: Firstly the set of collinear point-triples forms a regular two-graph, and secondly the symmetric difference of two intersecting lines is again a line. % The proof uses Hall's work on $3$-transposition groups of symplectic type, and Seidel's work on graphs that satisfy the triangle property.
@article{SLC_2018-2023_79_a1,
author = {Nick Gill and Neil I. Gillespie and Cheryl E. Praeger and Jason Semeraro},
title = {Conway {Groupoids,} {Regular} {Two-Graphs} and {Supersimple} {Designs}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {79},
year = {2018-2023},
url = {http://geodesic.mathdoc.fr/item/SLC_2018-2023_79_a1/}
}
TY - JOUR AU - Nick Gill AU - Neil I. Gillespie AU - Cheryl E. Praeger AU - Jason Semeraro TI - Conway Groupoids, Regular Two-Graphs and Supersimple Designs JO - Séminaire lotharingien de combinatoire PY - 2018-2023 VL - 79 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SLC_2018-2023_79_a1/ ID - SLC_2018-2023_79_a1 ER -
%0 Journal Article %A Nick Gill %A Neil I. Gillespie %A Cheryl E. Praeger %A Jason Semeraro %T Conway Groupoids, Regular Two-Graphs and Supersimple Designs %J Séminaire lotharingien de combinatoire %D 2018-2023 %V 79 %I mathdoc %U http://geodesic.mathdoc.fr/item/SLC_2018-2023_79_a1/ %F SLC_2018-2023_79_a1
Nick Gill; Neil I. Gillespie; Cheryl E. Praeger; Jason Semeraro. Conway Groupoids, Regular Two-Graphs and Supersimple Designs. Séminaire lotharingien de combinatoire, Tome 79 (2018-2023). http://geodesic.mathdoc.fr/item/SLC_2018-2023_79_a1/