A Convolution Formula for Tutte Polynomials of Arithmetic Matroids and Other Combinatorial Structures
Séminaire lotharingien de combinatoire, Tome 78 (2018-2020)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
In this note we generalize the convolution formula for the Tutte polynomial of Kook, Reiner, and Stanton and of Etienne and Las~Vergnas to a more general setting that includes both arithmetic matroids and delta-matroids. As corollaries, we obtain new proofs of two positivity results for pseudo-arithmetic matroids and a combinatorial interpretation of the arithmetic Tutte polynomial at infinitely many points in terms of arithmetic flows and colorings. We also exhibit connections with a decomposition of Dahmen-Micchelli spaces and lattice point counting in zonotopes.
@article{SLC_2018-2020_78_a2,
author = {Spencer Backman and Matthias Lenz},
title = {A {Convolution} {Formula} for {Tutte} {Polynomials} of {Arithmetic} {Matroids} and {Other} {Combinatorial} {Structures}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {78},
year = {2018-2020},
url = {http://geodesic.mathdoc.fr/item/SLC_2018-2020_78_a2/}
}
TY - JOUR AU - Spencer Backman AU - Matthias Lenz TI - A Convolution Formula for Tutte Polynomials of Arithmetic Matroids and Other Combinatorial Structures JO - Séminaire lotharingien de combinatoire PY - 2018-2020 VL - 78 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SLC_2018-2020_78_a2/ ID - SLC_2018-2020_78_a2 ER -
%0 Journal Article %A Spencer Backman %A Matthias Lenz %T A Convolution Formula for Tutte Polynomials of Arithmetic Matroids and Other Combinatorial Structures %J Séminaire lotharingien de combinatoire %D 2018-2020 %V 78 %I mathdoc %U http://geodesic.mathdoc.fr/item/SLC_2018-2020_78_a2/ %F SLC_2018-2020_78_a2
Spencer Backman; Matthias Lenz. A Convolution Formula for Tutte Polynomials of Arithmetic Matroids and Other Combinatorial Structures. Séminaire lotharingien de combinatoire, Tome 78 (2018-2020). http://geodesic.mathdoc.fr/item/SLC_2018-2020_78_a2/