A Convolution Formula for Tutte Polynomials of Arithmetic Matroids and Other Combinatorial Structures
Séminaire lotharingien de combinatoire, Tome 78 (2018-2020)
In this note we generalize the convolution formula for the Tutte polynomial of Kook, Reiner, and Stanton and of Etienne and Las~Vergnas to a more general setting that includes both arithmetic matroids and delta-matroids. As corollaries, we obtain new proofs of two positivity results for pseudo-arithmetic matroids and a combinatorial interpretation of the arithmetic Tutte polynomial at infinitely many points in terms of arithmetic flows and colorings. We also exhibit connections with a decomposition of Dahmen-Micchelli spaces and lattice point counting in zonotopes.
@article{SLC_2018-2020_78_a2,
author = {Spencer Backman and Matthias Lenz},
title = {A {Convolution} {Formula} for {Tutte} {Polynomials} of {Arithmetic} {Matroids} and {Other} {Combinatorial} {Structures}},
journal = {S\'eminaire lotharingien de combinatoire},
year = {2018-2020},
volume = {78},
url = {http://geodesic.mathdoc.fr/item/SLC_2018-2020_78_a2/}
}
TY - JOUR AU - Spencer Backman AU - Matthias Lenz TI - A Convolution Formula for Tutte Polynomials of Arithmetic Matroids and Other Combinatorial Structures JO - Séminaire lotharingien de combinatoire PY - 2018-2020 VL - 78 UR - http://geodesic.mathdoc.fr/item/SLC_2018-2020_78_a2/ ID - SLC_2018-2020_78_a2 ER -
Spencer Backman; Matthias Lenz. A Convolution Formula for Tutte Polynomials of Arithmetic Matroids and Other Combinatorial Structures. Séminaire lotharingien de combinatoire, Tome 78 (2018-2020). http://geodesic.mathdoc.fr/item/SLC_2018-2020_78_a2/