A Generalized Major Index Statistic on Tableaux
Séminaire lotharingien de combinatoire, Tome 78 (2018-2020)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
We extend the family of statistics majd, introduced for permutations by Kadell [J. Combin. Theory, Ser.~A, 40(1):22--44, 1985], to standard Young tableaux. At one extreme, we have the traditional major index statistic maj,sub>1 for tableaux. At the other end, whenever N >= n-1, then majN = inv, the inversion statistic introduced by Haglund and Stevens [Sém. Lothar. Combin., 56:B56c, 2006]. This answers a question of Assaf [Sém. Lothar. Combin., 60:B60c, 2008], who defined maj2 and maj3 for tableaux.
@article{SLC_2018-2020_78_a1,
author = {James Haglund and Emily Sergel},
title = {A {Generalized} {Major} {Index} {Statistic} on {Tableaux}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {78},
year = {2018-2020},
url = {http://geodesic.mathdoc.fr/item/SLC_2018-2020_78_a1/}
}
James Haglund; Emily Sergel. A Generalized Major Index Statistic on Tableaux. Séminaire lotharingien de combinatoire, Tome 78 (2018-2020). http://geodesic.mathdoc.fr/item/SLC_2018-2020_78_a1/