A Generalized Major Index Statistic on Tableaux
Séminaire lotharingien de combinatoire, Tome 78 (2018-2020)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

We extend the family of statistics majd, introduced for permutations by Kadell [J. Combin. Theory, Ser.~A, 40(1):22--44, 1985], to standard Young tableaux. At one extreme, we have the traditional major index statistic maj,sub>1 for tableaux. At the other end, whenever N >= n-1, then majN = inv, the inversion statistic introduced by Haglund and Stevens [Sém. Lothar. Combin., 56:B56c, 2006]. This answers a question of Assaf [Sém. Lothar. Combin., 60:B60c, 2008], who defined maj2 and maj3 for tableaux.

@article{SLC_2018-2020_78_a1,
     author = {James Haglund and Emily Sergel},
     title = {A {Generalized} {Major} {Index} {Statistic} on {Tableaux}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {78},
     year = {2018-2020},
     url = {http://geodesic.mathdoc.fr/item/SLC_2018-2020_78_a1/}
}
TY  - JOUR
AU  - James Haglund
AU  - Emily Sergel
TI  - A Generalized Major Index Statistic on Tableaux
JO  - Séminaire lotharingien de combinatoire
PY  - 2018-2020
VL  - 78
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_2018-2020_78_a1/
ID  - SLC_2018-2020_78_a1
ER  - 
%0 Journal Article
%A James Haglund
%A Emily Sergel
%T A Generalized Major Index Statistic on Tableaux
%J Séminaire lotharingien de combinatoire
%D 2018-2020
%V 78
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_2018-2020_78_a1/
%F SLC_2018-2020_78_a1
James Haglund; Emily Sergel. A Generalized Major Index Statistic on Tableaux. Séminaire lotharingien de combinatoire, Tome 78 (2018-2020). http://geodesic.mathdoc.fr/item/SLC_2018-2020_78_a1/