Binomial Species and Combinatorial Exponentiation
Séminaire lotharingien de combinatoire, Tome 78 (2018-2020)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
We introduce a "binomial" species, B(X,Y)=(1+X)îY = E(Y Lg(1+X)), where E(X) is the species of finite sets and Lg(1+X) is the combinatorial logarithm. The expansion of B includes, by specialization of variables, the classical binomial expansion, binomial expansions for symmetric functions, and (q,t)-series. We also define and study a new exponentiation operation, F\,îG, between species.
@article{SLC_2018-2020_78_a0,
author = {Gilbert Labelle},
title = {Binomial {Species} and {Combinatorial} {Exponentiation}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {78},
year = {2018-2020},
url = {http://geodesic.mathdoc.fr/item/SLC_2018-2020_78_a0/}
}
Gilbert Labelle. Binomial Species and Combinatorial Exponentiation. Séminaire lotharingien de combinatoire, Tome 78 (2018-2020). http://geodesic.mathdoc.fr/item/SLC_2018-2020_78_a0/