Sweeping up Zeta
Séminaire lotharingien de combinatoire, 78B (2017)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
We repurpose the main theorem of [Thomas and Williams, 2014] to prove that modular sweep maps are bijective. We conclude that the general sweep maps defined in [Armstrong, Loehr, and Warrington, 2014] are bijective. As a special case of particular interest, this gives the first proof that the zeta map on rational Dyck paths is a bijection.
@article{SLC_2017_78B_a9,
author = {Hugh Thomas and Nathan Williams},
title = {Sweeping up {Zeta}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {78B},
year = {2017},
url = {http://geodesic.mathdoc.fr/item/SLC_2017_78B_a9/}
}
Hugh Thomas; Nathan Williams. Sweeping up Zeta. Séminaire lotharingien de combinatoire, 78B (2017). http://geodesic.mathdoc.fr/item/SLC_2017_78B_a9/