Sweeping up Zeta
Séminaire lotharingien de combinatoire, 78B (2017)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

We repurpose the main theorem of [Thomas and Williams, 2014] to prove that modular sweep maps are bijective. We conclude that the general sweep maps defined in [Armstrong, Loehr, and Warrington, 2014] are bijective. As a special case of particular interest, this gives the first proof that the zeta map on rational Dyck paths is a bijection.

@article{SLC_2017_78B_a9,
     author = {Hugh Thomas and Nathan Williams},
     title = {Sweeping up {Zeta}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {78B},
     year = {2017},
     url = {http://geodesic.mathdoc.fr/item/SLC_2017_78B_a9/}
}
TY  - JOUR
AU  - Hugh Thomas
AU  - Nathan Williams
TI  - Sweeping up Zeta
JO  - Séminaire lotharingien de combinatoire
PY  - 2017
VL  - 78B
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_2017_78B_a9/
ID  - SLC_2017_78B_a9
ER  - 
%0 Journal Article
%A Hugh Thomas
%A Nathan Williams
%T Sweeping up Zeta
%J Séminaire lotharingien de combinatoire
%D 2017
%V 78B
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_2017_78B_a9/
%F SLC_2017_78B_a9
Hugh Thomas; Nathan Williams. Sweeping up Zeta. Séminaire lotharingien de combinatoire, 78B (2017). http://geodesic.mathdoc.fr/item/SLC_2017_78B_a9/