Whitney Duals of Geometric Lattices
Séminaire lotharingien de combinatoire, 78B (2017)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
Given a graded partially ordered set P, let wk(P) and Wk(P) denote its Whitney numbers of the first and second kind respectively. We call a graded partially ordered set Q a Whitney Dual of P if |wK(P)| = WK(Q) and Wk(P) = |wk(Q)| for all k. In this extended abstract, we show that every geometric lattice has a Whitney dual. This is done constructively, using edge labelings and quotient posets.
@article{SLC_2017_78B_a81,
author = {Rafael S. Gonz\'alez D'Le\'on and Joshua Hallam},
title = {Whitney {Duals} of {Geometric} {Lattices}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {78B},
year = {2017},
url = {http://geodesic.mathdoc.fr/item/SLC_2017_78B_a81/}
}
Rafael S. González D'León; Joshua Hallam. Whitney Duals of Geometric Lattices. Séminaire lotharingien de combinatoire, 78B (2017). http://geodesic.mathdoc.fr/item/SLC_2017_78B_a81/