Dyck Paths and Positroids from Unit Interval Orders
Séminaire lotharingien de combinatoire, 78B (2017) Cet article a éte moissonné depuis la source Séminaire Lotharingien de Combinatoire website

Voir la notice de l'acte

It is well known that the number of non-isomorphic unit interval orders on [n] equals the n-th Catalan number. Using work of Skandera and Reed and work of Postnikov, we show that each unit interval order on [n] naturally induces a rank n positroid on [2n]. We call the positroids produced in this fashion unit interval positroids. We characterize the unit interval positroids by describing their associated decorated permutations, showing that each one must be a 2n-cycle encoding a Dyck path of length 2n.

@article{SLC_2017_78B_a80,
     author = {Anastasia Chavez and Felix Gotti},
     title = {Dyck {Paths} and {Positroids} from {Unit} {Interval} {Orders}},
     journal = {S\'eminaire lotharingien de combinatoire},
     year = {2017},
     volume = {78B},
     url = {http://geodesic.mathdoc.fr/item/SLC_2017_78B_a80/}
}
TY  - JOUR
AU  - Anastasia Chavez
AU  - Felix Gotti
TI  - Dyck Paths and Positroids from Unit Interval Orders
JO  - Séminaire lotharingien de combinatoire
PY  - 2017
VL  - 78B
UR  - http://geodesic.mathdoc.fr/item/SLC_2017_78B_a80/
ID  - SLC_2017_78B_a80
ER  - 
%0 Journal Article
%A Anastasia Chavez
%A Felix Gotti
%T Dyck Paths and Positroids from Unit Interval Orders
%J Séminaire lotharingien de combinatoire
%D 2017
%V 78B
%U http://geodesic.mathdoc.fr/item/SLC_2017_78B_a80/
%F SLC_2017_78B_a80
Anastasia Chavez; Felix Gotti. Dyck Paths and Positroids from Unit Interval Orders. Séminaire lotharingien de combinatoire, 78B (2017). http://geodesic.mathdoc.fr/item/SLC_2017_78B_a80/