Dyck Paths and Positroids from Unit Interval Orders
Séminaire lotharingien de combinatoire, 78B (2017)
Cet article a éte moissonné depuis la source Séminaire Lotharingien de Combinatoire website
It is well known that the number of non-isomorphic unit interval orders on [n] equals the n-th Catalan number. Using work of Skandera and Reed and work of Postnikov, we show that each unit interval order on [n] naturally induces a rank n positroid on [2n]. We call the positroids produced in this fashion unit interval positroids. We characterize the unit interval positroids by describing their associated decorated permutations, showing that each one must be a 2n-cycle encoding a Dyck path of length 2n.
@article{SLC_2017_78B_a80,
author = {Anastasia Chavez and Felix Gotti},
title = {Dyck {Paths} and {Positroids} from {Unit} {Interval} {Orders}},
journal = {S\'eminaire lotharingien de combinatoire},
year = {2017},
volume = {78B},
url = {http://geodesic.mathdoc.fr/item/SLC_2017_78B_a80/}
}
Anastasia Chavez; Felix Gotti. Dyck Paths and Positroids from Unit Interval Orders. Séminaire lotharingien de combinatoire, 78B (2017). http://geodesic.mathdoc.fr/item/SLC_2017_78B_a80/