The Weyl-Kac Weight Formula
Séminaire lotharingien de combinatoire, 78B (2017)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

We provide the first formulae for the weights of all simple highest weight modules over Kac-Moody algebras. For generic highest weights, we present a formula for the weights of simple modules similar to the Weyl-Kac character formula. For the remaining highest weights, the formula fails in a striking way, suggesting the existence of `multiplicity-free' Macdonald identities for affine root systems.

@article{SLC_2017_78B_a76,
     author = {Gurbir Dhillon and Apoorva Khare},
     title = {The {Weyl-Kac} {Weight} {Formula}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {78B},
     year = {2017},
     url = {http://geodesic.mathdoc.fr/item/SLC_2017_78B_a76/}
}
TY  - JOUR
AU  - Gurbir Dhillon
AU  - Apoorva Khare
TI  - The Weyl-Kac Weight Formula
JO  - Séminaire lotharingien de combinatoire
PY  - 2017
VL  - 78B
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_2017_78B_a76/
ID  - SLC_2017_78B_a76
ER  - 
%0 Journal Article
%A Gurbir Dhillon
%A Apoorva Khare
%T The Weyl-Kac Weight Formula
%J Séminaire lotharingien de combinatoire
%D 2017
%V 78B
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_2017_78B_a76/
%F SLC_2017_78B_a76
Gurbir Dhillon; Apoorva Khare. The Weyl-Kac Weight Formula. Séminaire lotharingien de combinatoire, 78B (2017). http://geodesic.mathdoc.fr/item/SLC_2017_78B_a76/