Promotion, Evacuation and Cactus Groups
Séminaire lotharingien de combinatoire, 78B (2017)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

The promotion operator on rectangular standard tableaux can be generalised to an operator acting on the invariant highest weight words in the tensor power of a crystal. For the vector representation of a symplectic group the Sundaram correspondence is an injective map to perfect matchings. We show that this map intertwines promotion and rotation. For the adjoint representation of a general linear group we construct a similar map to permutations. We show that this map also intertwines promotion and rotation. These results are proved using an approach to the action of the cactus group using a generalisation of local rules and growth diagrams.

@article{SLC_2017_78B_a70,
     author = {Stephan Pfannerer and Martin Rubey and Bruce W. Westbury},
     title = {Promotion, {Evacuation} and {Cactus} {Groups}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {78B},
     year = {2017},
     url = {http://geodesic.mathdoc.fr/item/SLC_2017_78B_a70/}
}
TY  - JOUR
AU  - Stephan Pfannerer
AU  - Martin Rubey
AU  - Bruce W. Westbury
TI  - Promotion, Evacuation and Cactus Groups
JO  - Séminaire lotharingien de combinatoire
PY  - 2017
VL  - 78B
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_2017_78B_a70/
ID  - SLC_2017_78B_a70
ER  - 
%0 Journal Article
%A Stephan Pfannerer
%A Martin Rubey
%A Bruce W. Westbury
%T Promotion, Evacuation and Cactus Groups
%J Séminaire lotharingien de combinatoire
%D 2017
%V 78B
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_2017_78B_a70/
%F SLC_2017_78B_a70
Stephan Pfannerer; Martin Rubey; Bruce W. Westbury. Promotion, Evacuation and Cactus Groups. Séminaire lotharingien de combinatoire, 78B (2017). http://geodesic.mathdoc.fr/item/SLC_2017_78B_a70/