Promotion, Evacuation and Cactus Groups
    
    
  
  
  
      
      
      
        
Séminaire lotharingien de combinatoire, 78B (2017)
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
            
              The promotion operator on rectangular standard tableaux can be generalised to an operator acting on the invariant highest weight words in the tensor power of a crystal. For the vector representation of a symplectic group the Sundaram correspondence is an injective map to perfect matchings. We show that this map intertwines promotion and rotation. For the adjoint representation of a general linear group we construct a similar map to permutations. We show that this map also intertwines promotion and rotation. These results are proved using an approach to the action of the cactus group using a generalisation of local rules and growth diagrams. 
 
        
      
@article{SLC_2017_78B_a70,
     author = {Stephan Pfannerer and Martin Rubey and Bruce W. Westbury},
     title = {Promotion, {Evacuation} and {Cactus} {Groups}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {78B},
     year = {2017},
     url = {http://geodesic.mathdoc.fr/item/SLC_2017_78B_a70/}
}
                      
                      
                    Stephan Pfannerer; Martin Rubey; Bruce W. Westbury. Promotion, Evacuation and Cactus Groups. Séminaire lotharingien de combinatoire, 78B (2017). http://geodesic.mathdoc.fr/item/SLC_2017_78B_a70/