On the Growth of Kronecker Coefficients
Séminaire lotharingien de combinatoire, 78B (2017)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
We present a new stability phenomenon for Kronecker coefficients, that we call hook stability: the Kronecker coefficients stabilize if we add cells to the first row and first column of each of the indexing partitions, simultaneously. We also show that when we increase the sizes of the first two rows of their three indexing partitions, in some appropriate way, the Kronecker coefficients grow linearly, and we are able to give asymptotic estimates.
@article{SLC_2017_78B_a69,
author = {Emmanuel Briand and Amarpreet Rattan and Mercedes Rosas},
title = {On the {Growth} of {Kronecker} {Coefficients}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {78B},
year = {2017},
url = {http://geodesic.mathdoc.fr/item/SLC_2017_78B_a69/}
}
Emmanuel Briand; Amarpreet Rattan; Mercedes Rosas. On the Growth of Kronecker Coefficients. Séminaire lotharingien de combinatoire, 78B (2017). http://geodesic.mathdoc.fr/item/SLC_2017_78B_a69/