A Puzzle Formula for H*T x Cx(T*Pn)
Séminaire lotharingien de combinatoire, 78B (2017) Cet article a éte moissonné depuis la source Séminaire Lotharingien de Combinatoire website

Voir la notice de l'acte

We will begin with the work of Davesh Maulik and Andrei Okounkov where they define a "stable basis" for the T-equivariant cohomology ring H*T x Cx(T*Grk(Cn)), of the cotangent bundle to a Grassmannian. Just as we can compute the product structure of the the cohomology ring of a Grassmannian using Schubert classes as a basis, it is natural to attempt to do the same for the cotangent bundle to a Grassmannian using these Maulik-Okounkov classes as a basis. In this paper I compute the structure constants of both the regular and equivariant cohomology rings of the cotangent bundle to projective space, using Maulik-Okounkov classes as a basis. First I do so directly in Theorem 3.1, and then I put forth a conjectural positive formula, which uses a variant of Knutson-Tao puzzles, in Conjecture 4.2. The proof of the puzzle formula relies on an explicit rational function identity that I have checked through dimension 9.

@article{SLC_2017_78B_a66,
     author = {Voula Collins},
     title = {A {Puzzle} {Formula} for {H*T} x {Cx(T*Pn)}},
     journal = {S\'eminaire lotharingien de combinatoire},
     year = {2017},
     volume = {78B},
     url = {http://geodesic.mathdoc.fr/item/SLC_2017_78B_a66/}
}
TY  - JOUR
AU  - Voula Collins
TI  - A Puzzle Formula for H*T x Cx(T*Pn)
JO  - Séminaire lotharingien de combinatoire
PY  - 2017
VL  - 78B
UR  - http://geodesic.mathdoc.fr/item/SLC_2017_78B_a66/
ID  - SLC_2017_78B_a66
ER  - 
%0 Journal Article
%A Voula Collins
%T A Puzzle Formula for H*T x Cx(T*Pn)
%J Séminaire lotharingien de combinatoire
%D 2017
%V 78B
%U http://geodesic.mathdoc.fr/item/SLC_2017_78B_a66/
%F SLC_2017_78B_a66
Voula Collins. A Puzzle Formula for H*T x Cx(T*Pn). Séminaire lotharingien de combinatoire, 78B (2017). http://geodesic.mathdoc.fr/item/SLC_2017_78B_a66/