The Critical Exponent: a Novel Graph Invariant
Séminaire lotharingien de combinatoire, 78B (2017)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
A surprising result of FitzGerald and Horn (1977) shows that Ao α := (aijα) is positive semidefinite (p.s.d.) for every entrywise nonnegative n x n p.s.d. matrix A = (aij) if and only if α is a positive integer or α >= n-2. Given a graph G, we consider the refined problem of characterizing the set HG of entrywise powers preserving positivity for matrices with a zero pattern encoded by G. Using algebraic and combinatorial methods, we study how the geometry of G influences the set HG. Our treatment provides new and exciting connections between combinatorics and analysis, and leads us to introduce and compute a new graph invariant called the critical exponent.
@article{SLC_2017_78B_a61,
author = {Dominique Guillot and Apoorva Khare and Bala Rajaratnam},
title = {The {Critical} {Exponent:} a {Novel} {Graph} {Invariant}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {78B},
year = {2017},
url = {http://geodesic.mathdoc.fr/item/SLC_2017_78B_a61/}
}
Dominique Guillot; Apoorva Khare; Bala Rajaratnam. The Critical Exponent: a Novel Graph Invariant. Séminaire lotharingien de combinatoire, 78B (2017). http://geodesic.mathdoc.fr/item/SLC_2017_78B_a61/