Congruences Modulo Cyclotomic Polynomials and Algebraic Independence for q-Series
Séminaire lotharingien de combinatoire, 78B (2017)
Cet article a éte moissonné depuis la source Séminaire Lotharingien de Combinatoire website
We prove congruence relations modulo cyclotomic polynomials for multisums of q-factorial ratios, therefore generalizing many well-known p-Lucas congruences. Such congruences connect various classical generating series to their q-analogs. Using this, we prove a propagation phenomenon: when these generating series are algebraically independent, this is also the case for their q-analogs.
@article{SLC_2017_78B_a53,
author = {Boris Adamczewski and Jason P. Bell and \'Eric Delaygue and Fr\'ed\'eric Jouhet},
title = {Congruences {Modulo} {Cyclotomic} {Polynomials} and {Algebraic} {Independence} for {q-Series}},
journal = {S\'eminaire lotharingien de combinatoire},
year = {2017},
volume = {78B},
url = {http://geodesic.mathdoc.fr/item/SLC_2017_78B_a53/}
}
TY - JOUR AU - Boris Adamczewski AU - Jason P. Bell AU - Éric Delaygue AU - Frédéric Jouhet TI - Congruences Modulo Cyclotomic Polynomials and Algebraic Independence for q-Series JO - Séminaire lotharingien de combinatoire PY - 2017 VL - 78B UR - http://geodesic.mathdoc.fr/item/SLC_2017_78B_a53/ ID - SLC_2017_78B_a53 ER -
%0 Journal Article %A Boris Adamczewski %A Jason P. Bell %A Éric Delaygue %A Frédéric Jouhet %T Congruences Modulo Cyclotomic Polynomials and Algebraic Independence for q-Series %J Séminaire lotharingien de combinatoire %D 2017 %V 78B %U http://geodesic.mathdoc.fr/item/SLC_2017_78B_a53/ %F SLC_2017_78B_a53
Boris Adamczewski; Jason P. Bell; Éric Delaygue; Frédéric Jouhet. Congruences Modulo Cyclotomic Polynomials and Algebraic Independence for q-Series. Séminaire lotharingien de combinatoire, 78B (2017). http://geodesic.mathdoc.fr/item/SLC_2017_78B_a53/