Congruences Modulo Cyclotomic Polynomials and Algebraic Independence for q-Series
Séminaire lotharingien de combinatoire, 78B (2017)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

We prove congruence relations modulo cyclotomic polynomials for multisums of q-factorial ratios, therefore generalizing many well-known p-Lucas congruences. Such congruences connect various classical generating series to their q-analogs. Using this, we prove a propagation phenomenon: when these generating series are algebraically independent, this is also the case for their q-analogs.

@article{SLC_2017_78B_a53,
     author = {Boris Adamczewski and Jason P. Bell and \'Eric Delaygue and Fr\'ed\'eric Jouhet},
     title = {Congruences {Modulo} {Cyclotomic} {Polynomials} and {Algebraic} {Independence} for {q-Series}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {78B},
     year = {2017},
     url = {http://geodesic.mathdoc.fr/item/SLC_2017_78B_a53/}
}
TY  - JOUR
AU  - Boris Adamczewski
AU  - Jason P. Bell
AU  - Éric Delaygue
AU  - Frédéric Jouhet
TI  - Congruences Modulo Cyclotomic Polynomials and Algebraic Independence for q-Series
JO  - Séminaire lotharingien de combinatoire
PY  - 2017
VL  - 78B
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_2017_78B_a53/
ID  - SLC_2017_78B_a53
ER  - 
%0 Journal Article
%A Boris Adamczewski
%A Jason P. Bell
%A Éric Delaygue
%A Frédéric Jouhet
%T Congruences Modulo Cyclotomic Polynomials and Algebraic Independence for q-Series
%J Séminaire lotharingien de combinatoire
%D 2017
%V 78B
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_2017_78B_a53/
%F SLC_2017_78B_a53
Boris Adamczewski; Jason P. Bell; Éric Delaygue; Frédéric Jouhet. Congruences Modulo Cyclotomic Polynomials and Algebraic Independence for q-Series. Séminaire lotharingien de combinatoire, 78B (2017). http://geodesic.mathdoc.fr/item/SLC_2017_78B_a53/