On a Conjecture of Naito-Sagaki: Littelmann Paths and Littlewood-Richardson Sundaram Tableaux
Séminaire lotharingien de combinatoire, 78B (2017)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

In recent work with Schumann we have proven a conjecture of Naito-Sagaki giving a branching rule for the decomposition of the restriction of an irreducible representation of the special linear Lie algebra to the symplectic Lie algebra, therein embedded as the fixed-point set of the involution obtained by the folding of the corresponding Dynkin diagram. This conjecture had been open for over ten years, and provides a new approach to branching rules for non-Levi subalgebras in terms of Littelmann paths. In this extended abstract we motivate the conjecture, prove it for several cases, where we also relate it to the combinatorics of polytopes and Littlewood-Richardson cones, and highlight some difficulties of the proof in general.

@article{SLC_2017_78B_a52,
     author = {Jacinta Torres},
     title = {On a {Conjecture} of {Naito-Sagaki:} {Littelmann} {Paths} and {Littlewood-Richardson} {Sundaram} {Tableaux}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {78B},
     year = {2017},
     url = {http://geodesic.mathdoc.fr/item/SLC_2017_78B_a52/}
}
TY  - JOUR
AU  - Jacinta Torres
TI  - On a Conjecture of Naito-Sagaki: Littelmann Paths and Littlewood-Richardson Sundaram Tableaux
JO  - Séminaire lotharingien de combinatoire
PY  - 2017
VL  - 78B
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_2017_78B_a52/
ID  - SLC_2017_78B_a52
ER  - 
%0 Journal Article
%A Jacinta Torres
%T On a Conjecture of Naito-Sagaki: Littelmann Paths and Littlewood-Richardson Sundaram Tableaux
%J Séminaire lotharingien de combinatoire
%D 2017
%V 78B
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_2017_78B_a52/
%F SLC_2017_78B_a52
Jacinta Torres. On a Conjecture of Naito-Sagaki: Littelmann Paths and Littlewood-Richardson Sundaram Tableaux. Séminaire lotharingien de combinatoire, 78B (2017). http://geodesic.mathdoc.fr/item/SLC_2017_78B_a52/