A Proof of the Peak Polynomial Positivity Conjecture
Séminaire lotharingien de combinatoire, 78B (2017)
Cet article a éte moissonné depuis la source Séminaire Lotharingien de Combinatoire website
We say that a permutation π=π1π2...πn in Sn has a peak at index i if πi-1 πi > πi+1. Let P(π) denote the set of indices where π has a peak. Given a set S of positive integers, we define P(S;n) = {π in Sn : P(π)=S}. In 2013 Billey, Burdzy, and Sagan showed that for subsets of positive integers S and sufficiently large n, |P(S;n)| = pS(n)2n-|S|-1 where pS(x) is a polynomial depending on S. They gave a recursive formula for pS(x) involving an alternating sum, and they conjectured that the coefficients of pS(x) expanded in a binomial coefficient basis centered at max(S) are all nonnegative. In this paper we introduce a new recursive formula for |P(S;n)| without alternating sums and we use this recursion to prove that their conjecture is true.
@article{SLC_2017_78B_a5,
author = {Alexander Diaz-Lopez and Pamela E. Harris and Erik Insko and Mohamed Omar},
title = {A {Proof} of the {Peak} {Polynomial} {Positivity} {Conjecture}},
journal = {S\'eminaire lotharingien de combinatoire},
year = {2017},
volume = {78B},
url = {http://geodesic.mathdoc.fr/item/SLC_2017_78B_a5/}
}
Alexander Diaz-Lopez; Pamela E. Harris; Erik Insko; Mohamed Omar. A Proof of the Peak Polynomial Positivity Conjecture. Séminaire lotharingien de combinatoire, 78B (2017). http://geodesic.mathdoc.fr/item/SLC_2017_78B_a5/