A Proof of the Peak Polynomial Positivity Conjecture
Séminaire lotharingien de combinatoire, 78B (2017) Cet article a éte moissonné depuis la source Séminaire Lotharingien de Combinatoire website

Voir la notice de l'acte

We say that a permutation π=π1π2...πn in Sn has a peak at index i if πi-1 πi > πi+1. Let P(π) denote the set of indices where π has a peak. Given a set S of positive integers, we define P(S;n) = {π in Sn : P(π)=S}. In 2013 Billey, Burdzy, and Sagan showed that for subsets of positive integers S and sufficiently large n, |P(S;n)| = pS(n)2n-|S|-1 where pS(x) is a polynomial depending on S. They gave a recursive formula for pS(x) involving an alternating sum, and they conjectured that the coefficients of pS(x) expanded in a binomial coefficient basis centered at max(S) are all nonnegative. In this paper we introduce a new recursive formula for |P(S;n)| without alternating sums and we use this recursion to prove that their conjecture is true.

@article{SLC_2017_78B_a5,
     author = {Alexander Diaz-Lopez and Pamela E. Harris and Erik Insko and Mohamed Omar},
     title = {A {Proof} of the {Peak} {Polynomial} {Positivity} {Conjecture}},
     journal = {S\'eminaire lotharingien de combinatoire},
     year = {2017},
     volume = {78B},
     url = {http://geodesic.mathdoc.fr/item/SLC_2017_78B_a5/}
}
TY  - JOUR
AU  - Alexander Diaz-Lopez
AU  - Pamela E. Harris
AU  - Erik Insko
AU  - Mohamed Omar
TI  - A Proof of the Peak Polynomial Positivity Conjecture
JO  - Séminaire lotharingien de combinatoire
PY  - 2017
VL  - 78B
UR  - http://geodesic.mathdoc.fr/item/SLC_2017_78B_a5/
ID  - SLC_2017_78B_a5
ER  - 
%0 Journal Article
%A Alexander Diaz-Lopez
%A Pamela E. Harris
%A Erik Insko
%A Mohamed Omar
%T A Proof of the Peak Polynomial Positivity Conjecture
%J Séminaire lotharingien de combinatoire
%D 2017
%V 78B
%U http://geodesic.mathdoc.fr/item/SLC_2017_78B_a5/
%F SLC_2017_78B_a5
Alexander Diaz-Lopez; Pamela E. Harris; Erik Insko; Mohamed Omar. A Proof of the Peak Polynomial Positivity Conjecture. Séminaire lotharingien de combinatoire, 78B (2017). http://geodesic.mathdoc.fr/item/SLC_2017_78B_a5/