Standard Tableaux and Modular Major Index
Séminaire lotharingien de combinatoire, 78B (2017)
Cet article a éte moissonné depuis la source Séminaire Lotharingien de Combinatoire website
We provide simple necessary and sufficient conditions for the existence of a standard Young tableau of a given shape and major index r mod n, for all r. Our result generalizes the r=1 case due essentially to Klyachko (1974) and proves a recent conjecture due to Sundaram (2016) for the r=0 case. A byproduct of the proof is an asymptotic equidistribution result for ``almost all'' shapes. The proof uses a representation-theoretic formula involving Ramanujan sums and normalized symmetric group character estimates. Further estimates involving ``opposite'' hook lengths are given which are well-adapted to classifying which partitions λ of n have fλ = nd for fixed d.
@article{SLC_2017_78B_a49,
author = {Joshua P. Swanson},
title = {Standard {Tableaux} and {Modular} {Major} {Index}},
journal = {S\'eminaire lotharingien de combinatoire},
year = {2017},
volume = {78B},
url = {http://geodesic.mathdoc.fr/item/SLC_2017_78B_a49/}
}
Joshua P. Swanson. Standard Tableaux and Modular Major Index. Séminaire lotharingien de combinatoire, 78B (2017). http://geodesic.mathdoc.fr/item/SLC_2017_78B_a49/