Standard Tableaux and Modular Major Index
Séminaire lotharingien de combinatoire, 78B (2017)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
We provide simple necessary and sufficient conditions for the existence of a standard Young tableau of a given shape and major index r mod n, for all r. Our result generalizes the r=1 case due essentially to Klyachko (1974) and proves a recent conjecture due to Sundaram (2016) for the r=0 case. A byproduct of the proof is an asymptotic equidistribution result for ``almost all'' shapes. The proof uses a representation-theoretic formula involving Ramanujan sums and normalized symmetric group character estimates. Further estimates involving ``opposite'' hook lengths are given which are well-adapted to classifying which partitions λ of n have fλ = nd for fixed d.
@article{SLC_2017_78B_a49,
author = {Joshua P. Swanson},
title = {Standard {Tableaux} and {Modular} {Major} {Index}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {78B},
year = {2017},
url = {http://geodesic.mathdoc.fr/item/SLC_2017_78B_a49/}
}
Joshua P. Swanson. Standard Tableaux and Modular Major Index. Séminaire lotharingien de combinatoire, 78B (2017). http://geodesic.mathdoc.fr/item/SLC_2017_78B_a49/