Patterns of Negative Shifts and Signed Shifts
Séminaire lotharingien de combinatoire, 78B (2017)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

Given a function f from a linearly ordered set X to itself, we say that a permutation π is an allowed pattern of f if the relative order of the first n iterates of f beginning at some x in X is given by π. We give a characterization of the allowed patterns of signed shifts in terms of monotone runs of a certain transformation of π, which completes and simplifies the original characterization given by Amigó. Signed shifts, which are generalizations of the shift map where some slopes are allowed to be negative, are particularly well-suited to a combinatorial analysis. In the special case where all the slopes are negative, we give an exact formula for the number of allowed patterns. Finally, we obtain a combinatorial derivation of the topological entropy of signed shifts.

@article{SLC_2017_78B_a48,
     author = {Kassie Archer and Sergi Elizalde and Katherine Moore},
     title = {Patterns of {Negative} {Shifts} and {Signed} {Shifts}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {78B},
     year = {2017},
     url = {http://geodesic.mathdoc.fr/item/SLC_2017_78B_a48/}
}
TY  - JOUR
AU  - Kassie Archer
AU  - Sergi Elizalde
AU  - Katherine Moore
TI  - Patterns of Negative Shifts and Signed Shifts
JO  - Séminaire lotharingien de combinatoire
PY  - 2017
VL  - 78B
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_2017_78B_a48/
ID  - SLC_2017_78B_a48
ER  - 
%0 Journal Article
%A Kassie Archer
%A Sergi Elizalde
%A Katherine Moore
%T Patterns of Negative Shifts and Signed Shifts
%J Séminaire lotharingien de combinatoire
%D 2017
%V 78B
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_2017_78B_a48/
%F SLC_2017_78B_a48
Kassie Archer; Sergi Elizalde; Katherine Moore. Patterns of Negative Shifts and Signed Shifts. Séminaire lotharingien de combinatoire, 78B (2017). http://geodesic.mathdoc.fr/item/SLC_2017_78B_a48/