On Cycle Decompositions in Coxeter Groups
Séminaire lotharingien de combinatoire, 78B (2017)
Cet article a éte moissonné depuis la source Séminaire Lotharingien de Combinatoire website
The aim of this note is to show that the cycle decomposition of elements of the symmetric group admits a quite natural formulation in the framework of dual Coxeter theory, allowing a generalization of it to the family of so-called parabolic quasi-Coxeter elements of Coxeter groups (in the symmetric group every element is a parabolic quasi-Coxeter element). We show that such an element admits an analogue of the cycle decomposition. Elements which are not in this family still admit a generalized cycle decomposition, but it is not unique in general.
@article{SLC_2017_78B_a44,
author = {Thomas Gobet},
title = {On {Cycle} {Decompositions} in {Coxeter} {Groups}},
journal = {S\'eminaire lotharingien de combinatoire},
year = {2017},
volume = {78B},
url = {http://geodesic.mathdoc.fr/item/SLC_2017_78B_a44/}
}
Thomas Gobet. On Cycle Decompositions in Coxeter Groups. Séminaire lotharingien de combinatoire, 78B (2017). http://geodesic.mathdoc.fr/item/SLC_2017_78B_a44/