Dual Polar Graphs, a Nil-DAHA of Rank One, and Non-Symmetric Dual q-Krawtchouk Polynomials
Séminaire lotharingien de combinatoire, 78B (2017)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
Let Γ be a dual polar graph with diameter D >= 3. From every pair of a vertex of Γ and a maximal clique containing it, we construct a 2D-dimensional irreducible module for a nil-DAHA of type (Cv1,C1). Using this module, we define non-symmetric dual q-Krawtchouk polynomials and describe their orthogonality relations.
@article{SLC_2017_78B_a41,
author = {Jae-Ho Lee and Hajime Tanaka},
title = {Dual {Polar} {Graphs,} a {Nil-DAHA} of {Rank} {One,} and {Non-Symmetric} {Dual} {q-Krawtchouk} {Polynomials}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {78B},
year = {2017},
url = {http://geodesic.mathdoc.fr/item/SLC_2017_78B_a41/}
}
Jae-Ho Lee; Hajime Tanaka. Dual Polar Graphs, a Nil-DAHA of Rank One, and Non-Symmetric Dual q-Krawtchouk Polynomials. Séminaire lotharingien de combinatoire, 78B (2017). http://geodesic.mathdoc.fr/item/SLC_2017_78B_a41/