Dimers, Crystals and Quantum Kostka Numbers
Séminaire lotharingien de combinatoire, 78B (2017)
Cet article a éte moissonné depuis la source Séminaire Lotharingien de Combinatoire website
We relate the counting of honeycomb dimer configurations on the cylinder to the counting of certain vertices in Kirillov-Reshetikhin crystal graphs. We show that these dimer configurations yield the quantum Kostka numbers of the small quantum cohomology ring of the Grassmannian, i.e., the expansion coefficients when multiplying a Schubert class repeatedly with different Chern classes. This allows one to derive sum rules for Gromov-Witten invariants in terms of dimer configurations.
@article{SLC_2017_78B_a39,
author = {Christian Korff},
title = {Dimers, {Crystals} and {Quantum} {Kostka} {Numbers}},
journal = {S\'eminaire lotharingien de combinatoire},
year = {2017},
volume = {78B},
url = {http://geodesic.mathdoc.fr/item/SLC_2017_78B_a39/}
}
Christian Korff. Dimers, Crystals and Quantum Kostka Numbers. Séminaire lotharingien de combinatoire, 78B (2017). http://geodesic.mathdoc.fr/item/SLC_2017_78B_a39/