Dimers, Crystals and Quantum Kostka Numbers
Séminaire lotharingien de combinatoire, 78B (2017)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
We relate the counting of honeycomb dimer configurations on the cylinder to the counting of certain vertices in Kirillov-Reshetikhin crystal graphs. We show that these dimer configurations yield the quantum Kostka numbers of the small quantum cohomology ring of the Grassmannian, i.e., the expansion coefficients when multiplying a Schubert class repeatedly with different Chern classes. This allows one to derive sum rules for Gromov-Witten invariants in terms of dimer configurations.
@article{SLC_2017_78B_a39,
author = {Christian Korff},
title = {Dimers, {Crystals} and {Quantum} {Kostka} {Numbers}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {78B},
year = {2017},
url = {http://geodesic.mathdoc.fr/item/SLC_2017_78B_a39/}
}
Christian Korff. Dimers, Crystals and Quantum Kostka Numbers. Séminaire lotharingien de combinatoire, 78B (2017). http://geodesic.mathdoc.fr/item/SLC_2017_78B_a39/