Dimers, Crystals and Quantum Kostka Numbers
Séminaire lotharingien de combinatoire, 78B (2017)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

We relate the counting of honeycomb dimer configurations on the cylinder to the counting of certain vertices in Kirillov-Reshetikhin crystal graphs. We show that these dimer configurations yield the quantum Kostka numbers of the small quantum cohomology ring of the Grassmannian, i.e., the expansion coefficients when multiplying a Schubert class repeatedly with different Chern classes. This allows one to derive sum rules for Gromov-Witten invariants in terms of dimer configurations.

@article{SLC_2017_78B_a39,
     author = {Christian Korff},
     title = {Dimers, {Crystals} and {Quantum} {Kostka} {Numbers}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {78B},
     year = {2017},
     url = {http://geodesic.mathdoc.fr/item/SLC_2017_78B_a39/}
}
TY  - JOUR
AU  - Christian Korff
TI  - Dimers, Crystals and Quantum Kostka Numbers
JO  - Séminaire lotharingien de combinatoire
PY  - 2017
VL  - 78B
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_2017_78B_a39/
ID  - SLC_2017_78B_a39
ER  - 
%0 Journal Article
%A Christian Korff
%T Dimers, Crystals and Quantum Kostka Numbers
%J Séminaire lotharingien de combinatoire
%D 2017
%V 78B
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_2017_78B_a39/
%F SLC_2017_78B_a39
Christian Korff. Dimers, Crystals and Quantum Kostka Numbers. Séminaire lotharingien de combinatoire, 78B (2017). http://geodesic.mathdoc.fr/item/SLC_2017_78B_a39/