Torus Link Homology and the Nabla Operator
Séminaire lotharingien de combinatoire, 78B (2017)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

In recent work, Elias and Hogancamp develop a recurrence for the Poincar\'e series of the triply graded Hochschild homology of certain links, one of which is the (n,n) torus link. In this case, Elias and Hogancamp give a combinatorial formula for this homology that is reminiscent of the combinatorics of the modified Macdonald polynomial eigenoperator ∇. We give a combinatorial formula for the homologies of all links considered by Elias and Hogancamp. Our first formula is not easily computable, so we show how to transform it into a computable version. Finally, we conjecture a direct relationship between the (n,n) torus link case of our formula and the symmetric function ∇p1n.

@article{SLC_2017_78B_a37,
     author = {Andrew Timothy Wilson},
     title = {Torus {Link} {Homology} and the {Nabla} {Operator}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {78B},
     year = {2017},
     url = {http://geodesic.mathdoc.fr/item/SLC_2017_78B_a37/}
}
TY  - JOUR
AU  - Andrew Timothy Wilson
TI  - Torus Link Homology and the Nabla Operator
JO  - Séminaire lotharingien de combinatoire
PY  - 2017
VL  - 78B
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_2017_78B_a37/
ID  - SLC_2017_78B_a37
ER  - 
%0 Journal Article
%A Andrew Timothy Wilson
%T Torus Link Homology and the Nabla Operator
%J Séminaire lotharingien de combinatoire
%D 2017
%V 78B
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_2017_78B_a37/
%F SLC_2017_78B_a37
Andrew Timothy Wilson. Torus Link Homology and the Nabla Operator. Séminaire lotharingien de combinatoire, 78B (2017). http://geodesic.mathdoc.fr/item/SLC_2017_78B_a37/