Torus Link Homology and the Nabla Operator
Séminaire lotharingien de combinatoire, 78B (2017)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
In recent work, Elias and Hogancamp develop a recurrence for the Poincar\'e series of the triply graded Hochschild homology of certain links, one of which is the (n,n) torus link. In this case, Elias and Hogancamp give a combinatorial formula for this homology that is reminiscent of the combinatorics of the modified Macdonald polynomial eigenoperator ∇. We give a combinatorial formula for the homologies of all links considered by Elias and Hogancamp. Our first formula is not easily computable, so we show how to transform it into a computable version. Finally, we conjecture a direct relationship between the (n,n) torus link case of our formula and the symmetric function ∇p1n.
@article{SLC_2017_78B_a37,
author = {Andrew Timothy Wilson},
title = {Torus {Link} {Homology} and the {Nabla} {Operator}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {78B},
year = {2017},
url = {http://geodesic.mathdoc.fr/item/SLC_2017_78B_a37/}
}
Andrew Timothy Wilson. Torus Link Homology and the Nabla Operator. Séminaire lotharingien de combinatoire, 78B (2017). http://geodesic.mathdoc.fr/item/SLC_2017_78B_a37/