Torus Link Homology and the Nabla Operator
Séminaire lotharingien de combinatoire, 78B (2017)
Cet article a éte moissonné depuis la source Séminaire Lotharingien de Combinatoire website
In recent work, Elias and Hogancamp develop a recurrence for the Poincar\'e series of the triply graded Hochschild homology of certain links, one of which is the (n,n) torus link. In this case, Elias and Hogancamp give a combinatorial formula for this homology that is reminiscent of the combinatorics of the modified Macdonald polynomial eigenoperator ∇. We give a combinatorial formula for the homologies of all links considered by Elias and Hogancamp. Our first formula is not easily computable, so we show how to transform it into a computable version. Finally, we conjecture a direct relationship between the (n,n) torus link case of our formula and the symmetric function ∇p1n.
@article{SLC_2017_78B_a37,
author = {Andrew Timothy Wilson},
title = {Torus {Link} {Homology} and the {Nabla} {Operator}},
journal = {S\'eminaire lotharingien de combinatoire},
year = {2017},
volume = {78B},
url = {http://geodesic.mathdoc.fr/item/SLC_2017_78B_a37/}
}
Andrew Timothy Wilson. Torus Link Homology and the Nabla Operator. Séminaire lotharingien de combinatoire, 78B (2017). http://geodesic.mathdoc.fr/item/SLC_2017_78B_a37/