Using Rigged Configurations to Model B(\infty)
Séminaire lotharingien de combinatoire, 78B (2017) Cet article a éte moissonné depuis la source Séminaire Lotharingien de Combinatoire website

Voir la notice de l'acte

Crystal bases provide a rich environment for one to study quantized universal enveloping algebras and their representation theory for any symmetrizable Kac-Moody algebra by elucidating the underlying combinatorics. While the definition of a crystal basis involves complicated algebra, the combinatorial nature allows these crystals to be modeled using combinatorial objects. In this work, the underlying combinatorial model consists of rigged configurations, which allow for a uniform description of these crystals across all symmetrizable Kac-Moody types. Their flexibility is exhibited by the fact that the combinatorial isomorphism to crystals of tableaux is understood and that the star-crystal structure is easily computable directly from the rigged configurations. These results are summarized in this abstract.

@article{SLC_2017_78B_a33,
     author = {Ben Salisbury and Travis Scrimshaw},
     title = {Using {Rigged} {Configurations} to {Model} {B(\infty)}},
     journal = {S\'eminaire lotharingien de combinatoire},
     year = {2017},
     volume = {78B},
     url = {http://geodesic.mathdoc.fr/item/SLC_2017_78B_a33/}
}
TY  - JOUR
AU  - Ben Salisbury
AU  - Travis Scrimshaw
TI  - Using Rigged Configurations to Model B(\infty)
JO  - Séminaire lotharingien de combinatoire
PY  - 2017
VL  - 78B
UR  - http://geodesic.mathdoc.fr/item/SLC_2017_78B_a33/
ID  - SLC_2017_78B_a33
ER  - 
%0 Journal Article
%A Ben Salisbury
%A Travis Scrimshaw
%T Using Rigged Configurations to Model B(\infty)
%J Séminaire lotharingien de combinatoire
%D 2017
%V 78B
%U http://geodesic.mathdoc.fr/item/SLC_2017_78B_a33/
%F SLC_2017_78B_a33
Ben Salisbury; Travis Scrimshaw. Using Rigged Configurations to Model B(\infty). Séminaire lotharingien de combinatoire, 78B (2017). http://geodesic.mathdoc.fr/item/SLC_2017_78B_a33/